Supporting Information

Bimetallic Co₂Mo₃O₈ suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte

Yingqing Ou^a, Weiquan Tian^a, Lu Liu^c, Yunhuai Zhang^{a*} and Peng Xiao^{b*}

^aCollege of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China ^bCollege of Physics, Chongqing University, Chongqing 401331, China ^cCollege of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

AUTHOR INFORMATION

Corresponding Authors

*Tel. +86 13883077781; +86 15823038874.

To whom correspondence should be addressed:

(Y. H. Zhang) xp2031@163.com;

(P. Xiao) xiaopeng@cqu.edu.cn

Notes

The authors declare no competing financial interest.

Fig. S1 SEM images of (a) CoMoO₄ $\cdot 0.9 H_2 O/NF$ and (b) Co₂Mo₃O₈/NF

Fig. S2 XRD pattern of $CoMoO_4 \cdot 0.9H_2O$ supported on Ni foam.

Fig. S3 (a,b) TEM images of the tip region of Co nanowires. The inset in b shows the lattice fringe of the Co nanowire. (c,d) TEM images of $Co_2Mo_3O_8$ nanosheets with tiny pores (20~40 nm).

Fig. S4 (a) XPS survey spectrum of $Co_2Mo_3O_8/NF$. High-resolution XPS spectrum of

(b) Co 2p region, (c) Mo 3d region, and (d) O 1s region of $Co_2Mo_3O_8/NF$.

Fig. S5 Polarization curves of Co₂Mo₃O₈/NF and Co₂Mo₃O₈/Co/NF before and after iR-compensation (90%) in 1.0 M KOH.

Fig. S6 The amount of experimentally measured and theoretically calculated H_2 versus time for (a) Co₂Mo₃O₈/Co/NF and (b) Co₂Mo₃O₈/NF. A constant current of 10 mA was applied for 3,600 s; the electrolyte was 1.0 M KOH.

Fig. S7 (a) LSV curves of Co_3O_4/NF and Co/NF at a scan rate of 1 mV s⁻¹ in 1.0 M KOH (with 90 iR-compensation) . (b) Tafel plots derived from the LSV curves of the electrocatalysts. The HER activity of Co_3O_4 and Co nanowires supported on Ni foam was investigated as well. The Co_3O_4/NF and Co/NF yield a current density of 10 mA cm⁻² at overpotentials of 164 mV and 191 mV, respectively, much higher than the $Co_2Mo_3O_8$ -based electrodes. Meanwhile, the Tafel slopes of Co_3O_4/NF (109 mV dec⁻¹) and Co/NF (98 mV dec⁻¹) are also higher than the $Co_2Mo_3O_8$ -based electrodes. The above results verify the important role of $Co_2Mo_3O_8$ in the efficient hydrogen evolution.

Fig. S8 Cyclic voltammetry (CV) tests at different scan rates in non-Faradaic regions for (a) $CoMoO_4 \cdot 0.9H_2O/NF$, (b) $CoMoO_4 \cdot 0.9H_2O/Co_3O_4/NF$, (c) $Co_2Mo_3O_8/NF$ and (d) $Co_2Mo_3O_8/Co/NF$ electrodes.

Fig. S9 (a) The current density variation ($\Delta j = (j_a - j_c)/2$, at -0.09 V vs Ag/AgCl for CoMoO₄·0.9H₂O/NF and -0.14 V vs Ag/AgCl for CoMoO₄·0.9H₂O/Co₃O₄/NF) against the scan rates of Cyclic Voltammetry (CV) measurements. The Δj as a function of the scan rate yields a straight line and the slope of this straight line is equal to the value of C_{DL}. (b) Comparison of the calculated electrochemical double layer capacitance (C_{DL}) of different electrocatalysts in this work.

Fig. S10 (a,b) SEM images of $Co_2Mo_3O_8/Co/NF$ after stability test at different magnifications.

Fig. S11XPS spectra of $Co_2Mo_3O_8/Co/NF$ electrocatalyst before (black) and after 20 h chronopotentiometry test (red). (a) XPS survey spectra, and high-resolution XPS spectra of (b) Co 2p region, (c) Mo 3d region and (d) O 1s region.

Fig. S12 Curve-fitted high-resolution XPS spectra of (a) Mo 3d region, (b) O 1s region of the $Co_2Mo_3O_8/Co/NF$ electrocatalyst after 20 h chronopotentiometry test, (c) Mo 3d region and (d) O 1s region of the as-prepared $Co_2Mo_3O_8/Co/NF$.

Table S1. The HER catalytic activities of Co2Mo3O8-based eletrocatalysts in this

Electrocatalysts	Onset overpotential	Overpotential (mV)	Tafel slope	De Electrolyte	Rof
	(mv)	at 10 mA cm ⁻²	(mV dec ⁻¹)		Kel.
Co ₂ Mo ₃ O ₈ /Co/NF	9	50	49	1.0 M KOH	This
					work
Co ₂ Mo ₃ O ₈ /NF	16	85	88	1.0 M KOH	This
					work
Co-Mo nanoparticles		75		1.0 M KOH	[1]
Co-Mo ₂ C nanowires	25	118	44	1.0 M KOH	[2]
Mesoporous MoO _{3-x}	_	138	56	0.1 M KOH	[3]
Nanoflower-like MoO ₂ /NF	~0	55	66	1.0 M KOH	[4]
N,P-Doped Mo ₂ C@C		47	71	1.0 M KOH	[5]
nanospheres					
S and N codoped MoP	—	49	31	1.0 M KOH	[6]
Mo ₂ C nanoparticels on	38	100	65	1.0 M KOH	[7]
carbon microflowers					
Co/Co ₃ O ₄ core/shell	~30	129 mV	44	1.0 M KOH	[8]
nanosheets		at 20 mA cm ⁻²			
Hollow Co ₃ O ₄ microtube	100	190 mV	98	1.0 M KOH	[9]
arrays		at 20 mA cm ⁻²			
Co(OH)2@PANI hybrid	50	90	92	1.0 M KOH	[10]
nanosheets					
Ni-Mo nanopowders	_	70 mV	_	2.0 M KOH	[11]
		at 20 mA cm ⁻²			
NiMo alloy nanowires	—	30	86	1.0 M KOH	[12]
Ni ₂ P/Ni/NF	40	98	72	1.0 M KOH	[13]
CoP/CC	115	209	129	1.0 M KOH	[14]
FeP NAs/CC	86	218	146	1.0 M KOH	[15]
c-CoSe ₂ /CC		190	85	1.0 M KOH	[16]
NiSe/NF		96	120	1.0 M KOH	[17]
NiCo ₂ S ₄ NW/NF		210	58.9	1.0 M KOH	[18]

work and reported non-noble metal electrocatalysts in alkaline solutions.

NiCo ₂ S ₄ /NF	17	65	84.5	1.0 M KOH	[19]
NiFe LDH/NiCo ₂ O ₄ /NF	83	192	59	1.0 M KOH	[20]
NiCoFe LTHs/CFC	180	200	70	1.0 M KOH	[21]

References

- [1] J. M. McEnaney, T. L. Soucy, J. M. Hodges, J. F. Callejas, J. S. Mondschein, R. E.Schaak, J. Mater. Chem. A 2016, 4, 3077.
- [2] H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang, Q, Gao, Adv. Funct. Mater. 2016, 26, 5590.
- [3] Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D.
- A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, S. L. Suib, *Adv. Energy Mater*.2016, 6, 1600528.
- [4] Y. Jin, P. K. Shen, J. Mater. Chem. A 2015, 3, 20080.
- [5] Y. Chen, Y. Zhang, W. Jiang, X. Zhang, Z. Dai, L. Wan, J. Hu, ACS Nano 2016, 10, 8851.
- [6] M. A. R. Anjum, J. S. Lee, ACS Catal. 2017, 7, 3030.
- [7] Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong, Y. Li, ACS Nano 2016,10, 11337.
- [8] X. Yan, L. Tian, M. He, X. Chen, Nano Lett. 2015, 15, 6015.
- [9] Y. Zhu, T. Ma, M. Jaroniec, S. Qiao, Angew. Chem. Int. Ed. 2016, 55, 1.
- [10] J. Feng, L. Ding, S. Ye, X. He, H. Xu, Y. Tong, G. Li, Adv. Mater. 2015, 27, 7051.
- [11] J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, H. B. Gray, ACS Catal.

2013, *3*, 166.

- [12] M. Fang, W. Gao, G. Dong, Z. Xia, S. Yip, Y. Qin, Y. Qu, J. C. Ho, Nano Energy 2016, 27, 147.
- [13] B. You, N. Jiang, M. Sheng, M. W. Bhushan, Y. Sun, ACS Catal. 2016, 6, 714.
- [14] J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587.
- [15] Y. Liang, Q. Liu, A. M. Asiri, X. Sun, Y. Luo, ACS Catal. 2014, 4, 4065.
- [16] P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu, Y. Xie, *Adv. Mater.* 2016, *28*, 7527.
- [17] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. 2015, 127, 9483.
- [18] A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 2016, 26, 4661.
- [19] L. Ma, Y. Hu, R. Chen, G. Zhu, T. Chen, H. Lv, Y. Wang, J. Liang, H. Liu, C.
- Yan, H. Zhu, Z. Tie, Z. Jin, J. Liu, Nano Energy 2016, 24, 139.
- [20] Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, ACS Appl. Mater. Interfaces. 2017, 9, 1488.
- [21] A. Wang, H. Xu, G. Li, ACS Energy Lett. 2016, 1, 445.