Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Ratiometric Near-Infrared Fluorescence Nanothermometry in the OTN-NIR (NIR II/III) Biological Window Based on Rare-Earth Doped β-NaYF₄ Nanoparticles

Masao Kamimura,*^{a,b} Taiki Matsumoto,^a Satoru Suyari,^a Masakazu Umezawa,^{a,b} and Kohei Soga*^{a,b}

^a Department of Materials Science and Technology, Tokyo University of Science,

6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 Japan.

^b Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST),

Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.

*Corresponding author: E-mail: masaokamimura@rs.tus.ac.jp; mail@ksoga.com

Fig. S1 Temperature dependence of the OTN-NIR emission of the PEGylated NaYF₄:Yb³⁺,Ho³⁺,Er³⁺ NPs in physiological saline. (A) Temperature dependence of the emission spectra. (B) Temperature dependence of the intensity ratio between the emission peaks, I_{Ho}/I_{Er} . The emission measurement was performed in physiological saline as the dispersion medium with a sample concentration of 40 mg/mL. The excitation wavelength was 980 nm. The laser power was 4.22 W.