Supporting information

Ultrafine Transition Metal Dichalcogenides Nanodots Prepared by Polyvinylpyrrolidone -assisted Liquid Phase Exfoliation

Shan Zhang,^{ab} Jing Li*a and Erkang Wang*a

a. State Key Laboratory of Electroanalytical Chemistry, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences,
Changchun, Jilin, 130022, P. R. China. E-mail: ekwang@ciac.ac.cn; Tel:
+86-431-85262003

b. University of Science and Technology of China, Hefei, Anhui, 230029,P. R. China.

Figure S1. UV-vis spectra of MoSe₂-PVP dispersions exfoliated by PVP of different

average molecular weight.

Figure S2. UV-vis spectra of MoSe₂-PVP dispersions in the presence of PVP-K17 obtained by different sonication time.

Figure S3. UV-vis absorption spectra of (A) certain amount of MoS_2 (2.5 mg/mL) obtained by sonication in various concentrations of PVP-K17, and (C) different concentrations of MoS_2 dispersions in the presence of certain amount of PVP-K17 (25 mg/mL). The tendency between UV-vis absorption of MoS_2 -PVP dispersions located at 345 nm and various concentrations of PVP-K17 (B) and initial MoS_2 powder (D).

Figure S4. UV-vis absorption spectra of (A) certain amount of WSe₂ (2.5 mg/mL) obtained by sonication in various concentrations of PVP-K17, and (C) different concentrations of WSe₂ dispersion in the presence of certain amount of PVP-K17 (5 mg/mL). The tendency between UV-vis absorption of WSe₂-PVP dispersions located at 335 nm and various concentrations of PVP-K17 (B) and initial WSe₂ powder (D).

Figure S5. UV-vis absorption spectra of (A) certain amount of WS_2 (2.5 mg/mL) obtained by sonication in various concentrations of PVP-K17, and (C) different concentrations of WS_2 dispersion in the presence of certain amount of PVP-K17 (25 mg/mL). The tendency between UV-vis absorption of WS_2 -PVP dispersions located at 295 nm and various concentrations of PVP-K17 (B) and initial WS_2 powder (D).

Figure S6. TEM-EDX pattern of MoSe₂-PVP nanocomposites.

Figure S7. Photothermal heating curve of pure PVP-K17 with the same concentration as that in Figure 6A in the main text.

Figure S8. UV-vis spectra of $MoSe_2$ -PVP dispersion (100 μ g/mL) before and after 808 nm laser irradiation for successive six cycles with an on-and-off laser irradiation.

	Concentration of PVP (mg/mL)	Concentration of bulk crystal (mg/mL)
MoSe ₂	20	15
MoS_2	25	2.5
WSe ₂	5	5
WS_2	25	10

Table S1. Summary of the optimal concentrations of PVP-K17 and bulk crystal.