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Materials and instruments. Unless otherwise stated, all reagents were purchased
from commercial suppliers and used without further purification. Solvents used were
purified by standard methods prior to use. Twice-distilled water was used throughout
all experiments. Mass spectra were performed using an LCQ Advantage ion trap mass
spectrometer from Thermo Finnigan or Agilent 1100 HPLC/MSD spectrometer. NMR
spectra were recorded on an INOVA-400 spectrometer, using TMS as an internal
standard. Electronic absorption spectra were obtained on a Labtech UV Power PC
spectrometer. Photoluminescent spectra were recorded at 37°C with a HITACHI
F4600 fluorescence spectrophotometer. The fluorescence imaging of the cells was
performed with OLYMPUS FV1000 (TY1318) confocal microscopy and Nikon A1MP
confocal microscopy. TLC analysis was performed on silica gel plates and column
chromatography was conducted over silica gel (mesh 200-300), both of which were

obtained from the Qingdao Ocean Chemicals.

Determination of the fluorescence quantum yield!-3: Fluorescence quantum yields
for TPFC-1~5 were determined by using ICG (@,= 0.13 in DMSO) as a fluorescence
standard.! The quantum yield was calculated using the following equation:

Opx)= Dr(s) (AsFx | AxFs) (ny /ng)?
Where @f is the fluorescence quantum yield, 4 is the absorbance at the excitation
wavelength, F'is the area under the corrected emission curve, and # is the refractive
index of the solvents used. Subscripts s and x refer to the standard and to the

unknown, respectively.
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Measurement of two-photon absorption cross-sections. The two-photon absoprtion
cross-section (c) was determined by using a femtosecond (fs) fluorescence

measurement technique. TPFC-1~5 were dissolved in EtOH, at a concentration of
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5.0x 103 M, and then the two-photon fluorescence was excited at 700-900 nm by
using fluorescein in pH = 11 aqueous solution (¢ = 32 GM in 810 nm) as the
standard, whose two-photon property has been well characterized in the literature.
The  two-photon  cross-section was  calculated by using o =
o (Fn2®,C,)/(Fn2®,C,), where the subscripts t and r stand for the sample and
reference molecules. F is the average fluorescence intensity integrated from two-
photon emission spectrum, n is the refractive index of the solvent, C is the
concentration, @ is the quantum yield, and o, is the two-photon cross-section of

the reference molecule.

Cell culture and fluorescence imaging

HeLa cells were grown in MEM (modified Eagle’s medium) supplemented with
10% FBS (fetal bovine serum) in an atmosphere of 5% CO, and 95% air at 37 °C.
The cells were plated in 35 mm glass-bottom culture dishes and allowed to adhere
for 24 h. Immediately before the experiments, the cells were washed with PBS
buffer. The cells were further incubated with TPFC or TPFC-Lyso dyes (5 uM)
for 30 min at 37 °C and imaged with a Olympus FV1000 equipped with a CCD

camera.

Preparation of fresh mouse slices and two-photon fluorescence imaging.

Kunming mice were purchased from the Experimental Animal Center of Xiangya
School of Medicine Central South University (Changsha, China). All animal
procedures for this study were approved by the Animal Ethical Experimentation
Committee of the Central South University according to the requirements of the
National Act on the use of experimental animals (China). Slices were prepared from
the brain or liver of 14-day-old mice. Slices were cut to 400 um thickness by using a

vibrating-blade microtome in 25 mM PBS (pH 7.4). For the full-color imaging
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experiments, the slices were incubated with 20 uM TPFC in PBS buffer bubbled with
95% O, and 5% CO, for 0.5 h at 37 °C. The slices were then washed three times with
PBS, transferred to the glass-bottomed dishes, and observed under a two-photon
confocal microscope (OLYMPUS FV1000 (TY1318)). The two-photon fluorescence
emission was collected at different fluorescence emission windows upon excitation at
780 nm with a femtosecond pulse. The blue, green, yellow, orange, and red
channels correspond to the emission windows of 420-470, 480-530, 530-580, 580-
630, and 630-690 nm, respectively.

Synthesis of compound 5.

A mixture of 4-bromo-1,8-naphthalic anhydride (5.54 g, 20.0 mmol) and N-(2-
aminoethyl) morpholine (2.4 mL, 24 mmol) in ethanol (200 mL) was refluxed under
nitrogen for 12 h. The solution was cooled to room temperature and formed a crystal.
The crystal was separated by filtration and washed with cold ethanol to give the
compound 5 as a pale yellow crystal (4.9 g, 64.5 %). '"H NMR (400 MHz, CDCl;) 3 8.65
(d, J=7.3 Hz, 1H), 8.57 (d, J = 8.5 Hz, 1H), 8.41 (d, J= 7.9 Hz, 1H), 8.04 (d, J= 7.9 Hz,
1H), 7.88-7.83 (m, 1H), 4.34 (t, J = 6.9 Hz, 2H), 3.70-3.66 (m, 4H), 2.71 (t, J = 6.8 Hz, 2H),
2.60 (s, 4H). 3C NMR (100 MHz, CDCl;) 6 163.25, 132.96, 131.69, 130.88, 130.76, 130.31,
129.96, 128.70, 127.74, 122.71, 121.84, 66.67, 55.73, 53.46, 36.96. MS (ESI) m/z =

389.2[M+H]".

Synthesis of compound 6.

Compound 5 (1.1 g, 3.0 mmol) in 2-methoxy ethanol(20 mL) was heated to 120 °C
until the mixture became clear. After that, hydrazine hydrate (1 mL, 80 %) was added
to the solution dropwisely with stirring in 10 min. Then, the mixture was refluxed for
another 3.5 h under nitrogen. After cooling, the crystal was separated by filtration and
washed with cold ethanol to afford the compound 6 as a pale yellow crystal (0.61 g,

60.1 %). '"H NMR (400 MHz, d6-DMSO) & 8.65 (d, J = 8.4 Hz, 1H), 8.45 (d, J = 7.3 Hz,
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1H), 8.32 (d, J = 8.6 Hz, 1H), 7.73-7.64 (m, 1H), 7.28 (d, J = 8.6 Hz, 1H), 4.72 (s, 2H), 4.20
(d, J=7.0 Hz, 2H), 3.58 (1, J = 4.4 Hz, 4H), 2.57 (dd, J = 11.4, 4.4 Hz, 4H). 3C NMR (100
MHz, d6-DMSO) & 164.06, 163.16, 153.50, 134.53, 130.89, 129.61, 128.57, 124.41, 121.96,

118.70, 107.55, 104.29, 66.49, 56.10, 55.19, 53.71, 36.65. MS (ESI) m/z = 341.2[M+H]".
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Figure S1. Normalized absorption (a) and fluorescence emission (b) spectra of 5 uM
compounds TPFC-1 (m), TPFC-2 (e), TPFC-3(A), TPFC-4 (V), and TPFC-5 (@)
in EtOH.

Table S1. Photophysical data of TPFC Fluorophores in EtOH.

Compd. Amax Emax Aem D Stokes
(nm)? (nm)® Shifts
(nm)

TPFC-1 368 11120 436 0.277 68
TPFC-2 418 23020 524 0.110 106
TPFC-3 436 16650 571 0.091 135
TPFC-4 446 39040 589 0.114 143
TPFC-5 510 34920 687 0.165 177

2 The maximal absorption of the dye.
® The maximal emission of the dyes.
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Figure S2. Normalized absorption (a) and fluorescence emission (b) spectra of 5 uM

compounds TPFC-1 (m), TPFC-2 (o), TPFC-3(A ), TPFC-4 (V), and TPFC-5 (#)

in DMSO.

Table S2. Photophysical data of TPFC Fluorophores in DMSO.

Compd. Amax Emax Aem () Stokes
(nm)? (nm)® Shifts
(nm)
TPFC-1 372 10970 438 0.269 66
TPFC-2 422 20700 525 0.523 103
TPFC-3 440 16890 574 0.317 134
TPFC-4 448 31080 597 0.700 149
TPFC-5 512 32580 710 0.292 198

2 The maximal absorption of the dye.
b The maximal emission of the dyes.
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Figure S3. Normalized absorption (a) and fluorescence emission (b) spectra of 5 uM

compounds TPFC-1 (m), TPFC-2 (o), TPFC-3(A), TPFC-4 (V), and TPFC-5 (®)

in CH2C12

Table S3. Photophysical data of TPFC Fluorophores in CH,Cl,.

Compd.  Amax Emax Aem 0 Stokes
(nm)?2 (nm)® Shift
(nm)
TPFC-1 370 10710 433 0.381 63
TPFC-2 422 25580 515 0.230 93
TPFC-3 440 17810 555 0.171 115
TPFC-4 436 41780 555 0.101 119
TPFC-5 504 27620 652 0.659 148

2 The maximal absorption of the dye.
® The maximal emission of the dyes.
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Figure S4. Two-photon cross-sections of TPFC-1 (m), TPFC-2 (o), TPFC-3(A),

TPFC-4 (V), and TPFC-5 (@) in EtOH.

Table S4. The maximal two-photon cross-sections and action cross-sections of TPFC

dyes in EtOH.

TPFC-1 TPFC-2 TPFC-3 TPFC-4 TPFC-5

Two-photon  action

cross-section 244 58 12 41 34
(GM)
Two-photon  cross- 883 532 125 358 200

section (GM)
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Figure S5. Two-photon cross-sections of TPFC-1 (m), TPFC-2 (o), TPFC-3(A),
TPFC-4 (V), and TPFC-5 (@) in PBS.

Table S5. Calculated absorption wavelengths and oscillator strengths of the TPFC
dyes. All data were obtained from Gaussian 09 programs using the B3LYP exchange
functional, together with 6-31+G(d) basis sets.

TPFC-1 TPFC-2 TPFC-3 TPFC-4 TPFC-5

Absorption
wavelength (nm) 367 432 450 452 500
Oscillator strength 0.32 0.99 1.11 0.72 1.13
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Figure S6. Bright field and one-photon full-color imaging of the living HeLa cells
stained with TPFC-1~5 dyes. a-e) Bright field images of the living HeLa cells treated
with 5 uM TPFC-1, TPFC-2, TPFC-3, TPFC-4, or TPFC-5, respectively, for 0.5 h.
f-j) one-photon fluorescence images of the Hela cells stained with TPFC-1, TPFC-2,
TPFC-3, TPFC-4, TPFC-5, respectively (5 uM) for 0.5 h. Scale bar = 10 um. The
blue, green, yellow, orange, and red channels correspond to the emission windows of

420-470, 480-530, 530-580, 580-630, and 630-690 nm, respectively.

TPFC-1 TPFC-2 TPFC-3 TPFC-4 TPFC-5

G0 1 m 90 m

110 m

1200 m 1201 m 1201 m

Figure S7. Two-photon full-color imaging of the living liver slices of mice incubated
with the TPFC-1~5 dyes. a, f, k, p) Full-color imaging of the living liver slices of
mice incubated with the TPFC-1 dye; b, g, 1, q) Full-color imaging of the living liver
slices of mice incubated with the TPFC-2 dye; c, h, m, u) Full-color imaging of the
living liver slices of mice incubated with the TPFC-3 dye; d, i, n, v) Full-color
imaging of the living liver slices of mice incubated with the TPFC-4 dye; e, j, 0, w)
Full-color imaging of the living liver slices of mice incubated with the TPFC-5 dye.
Scale bar = 50 pm. The blue, green, yellow, orange, and red channels correspond to
the emission windows of 420-470, 480-530, 530-580, 580-630, and 630-690 nm,

respectively. Excitation at 780 nm.
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Figure S8. Confocal fluorescence images of TPFC-2 dye (5 uM) incubated with
1 uM LysoTracker Red (a-c), 1 uM Mitotracker Red (d-f) and 1 uM Golgi-Tracker
Red (g-1) in living HeLa cells at pH=7.4. Images were acquired using 488 nm
excitation and emission channel of 500-540 nm for TPFC-2 dye, 561 nm excitation

and emission channel of 580—640 nm for organelle Tracker; Scale bar =20 pum.
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Figure S9. Fluorescent imaging of the living Hela cells co-stained with TPFC-Lyso-
2 and LysoTracker Red. a) Fluorescence image of the cells from the green channel; b)

Fluorescence images of the cells from the red channel; ¢) Overlay of a and b; (d)
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Intensity profile of the region of interest (indicated by the white color line in ¢). Green
line for a and red line for b. (e) Correlation plot of TPFC-Lyso-2 and LysoTracker

Red intensities.

Lyso-Tracker red Lyso-1 r.‘u:m
o ....
2) h)
- ..
.. — L] D n)

Merged

Figure S10. Fluorescence imaging of the living Hela cells co-stained with TPFC-

Lyso and LysoTracker. a, f, k)TPFC-Lyso-1 co-stained with LysoTracker Red; b, g,
)TPFC-Lyso-2 co-stained with LysoTracker Red; ¢, h, m)TPFC-Lyso0-3 co-stained
with LysoTracker Red; d, i, n)TPFC-Lyso-4 co-stained with LysoTracker Green; e, j,
0)TPFC-Lyso-5 co-stained with LysoTracker Green; Scale bar = 10 um. The blue,
green, yellow, orange, and red channels correspond to the emission windows of 420-

470, 480-530, 530-580, 580-630, and 630-690 nm, respectively.
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Figure S20. 3C NMR spectrum of TPFC-5 (CDCl;).

130

140

190 180 170 160 150

10 200

S18



S¥'L

8¥'C
€97
E.NM
€T
SLT

0L¢
72>
clLe
9er
mo.vW
6eY

N=

|

|

45

“Cl'e
=vly)
A

~60°Y|

=lgC

=GLL

~Y
[N N>
538
-0

[

15

3.0 25 20

35

4.0

5.0

f1 (ppm)
Figure S21. '"H NMR spectrum of TPFC-Lyso-1 (CDCl;).

6.0 5.5

6.5

8.0 75 7.0

85

9.0

F110

100
90
80
F70
60
60
40

S9'6LL
pACy#A3
t.mmv#
obigl~
€Tl
Se°0E)
¥SlEL
seerl—

cTesl—

vLy9l
ww..vm:v

e
FJ-3€0C13
T

50

60

150 130 110 90 80 70

170

190

1 (ppm})

Figure S22. 3C NMR spectrum of TPFC-Lyso-1 (CDCls).
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Figure S25. '"H NMR spectrum of TPFC-Lyso-3 (CDCl;).
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Figure S26. 3C NMR spectrum of TPFC-Lyso-3 (CDCIs).
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Figure S29. '"H NMR spectrum of TPFC-Lyso-5 (CDCl;).
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Figure S30. 3C NMR spectrum of TPFC-Lyso-5 (CDCIs).
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Figure S31. '"H NMR spectrum of Compound 5 (CDCly).
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Figure S32. 3C NMR spectrum of Compound 5 (CDCly).
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Figure S33. 'H NMR spectrum of Compound 6 (d6-DMSO).
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