Supporting Information

Peroxidase Activity of the Coronene Bisimide Supramolecular Architecture and the Applications in Colorimetric Sensing of H_2O_2 and Glucose

Meiding Yang,^{ab} Huipeng Zhou,^{*ab} Yongxin Li,^{ab} Qingfeng Zhang,^{ab} Juanmin Li,^{ab} Cuiyun Zhang,^{abc} Chuibei Zhou^a and Cong Yu^{*ab}

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China ^cSchool of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China

*To whom correspondence should be addressed E-mail: congyu@ciac.ac.cn; hpzhou@ciac.ac.cn Fax: (+86) 431-8526-2710

Experimental section

Optimization of the H_2O_2 assay

The effect of CTDI concentration

The catalytic activity of CTDI was studied. TMB, H_2O_2 and different amounts of CTDI were added to the sample buffer solution, mixed briefly and incubated in a 37 °C water bath for 2 h. The absorption spectra were measured, and the intensity changes of the absorbance maximum of the oxidized TMB at 652 nm were followed. Final concentrations: TMB, 500 μ M; H_2O_2 , 100 μ M; CTDI, 0, 5, 10, 15, 20, 25 and 30 μ M, respectively; buffer, 50 mM HAc-NaAc, pH 5.0; total sample volume, 200 μ L.

The effect of buffer pH value

TMB and H_2O_2 were added to buffer solutions of different pH value in the absence or presence of CTDI. The sample solutions were mixed briefly and incubated in a 37 °C water bath for 2 h, and the absorption spectra were recorded. Conditions: TMB, 500 μ M; H_2O_2 , 100 μ M; CTDI, 20 μ M; buffer, 50 mM, NaAc-HAc, pH 3.5, 4.0, 4.5, 5.0, 5.5; Na₂HPO₄-NaH₂PO₄, pH 6.0, 6.5, 7.0.

The effect of buffer concentration

A HAc-NaAc buffer solution of different concentrations (Final concentrations: 5 - 60 mM, pH 5.0) was added to a sample solution containing 500 μ M TMB, 100 μ M H₂O₂ and 20 μ M CTDI, mixed briefly and incubated in a 37 °C water bath for 2 h, and the absorption spectra were recorded.

The effect of reaction time

 H_2O_2 of various concentrations (Final concentrations: 0, 10, 100, 300, 500 μ M, respectively) was added to the sample buffer solution containing 500 μ M TMB and 20 μ M CTDI. The sample solutions were incubated at 37 °C and the absorption spectra were recorded at different incubation time (0 – 150 min, buffer, 50 mM HAc-NaAc, pH 5.0).

Kinetic assay

The peroxidase-like catalytic activity of the CTDI nanofibers was studied. The assay was conducted using 20 μ M CTDI in buffer solution (50 mM, NaAc-HAc, pH 5.0, 37 °C). TMB concentration was kept constant (0.5 mM) and H₂O₂ concentration was varied. Then H₂O₂ concentration was kept constant (50 mM) and TMB concentration was varied. The reactions were monitored via the UV-vis absorption changes at 652 nm. The reaction rates were calculated (molar extinction coefficient of oxidized TMB: 39,000 M⁻¹·cm⁻¹). The Michaelis–Menten constant was calculated using the Lineweaver–Burk plot: $1/\nu = K_m/V_{max} \cdot (1/[S]+1/K_m)$, where ν is the initial reaction velocity, V_{max} is the maximal reaction velocity, and [S] is the concentration of the substrate.

Optimization of the glucose assay

The effect of GOx concentration

GOx of various concentrations (Final concentrations: 0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2.5, 5 U/mL, respectively) was added to the sample solution containing 100 μ M glucose, 500 μ M TMB, and 20 μ M CTDI. Samples were incubated in a 37 °C water bath for 2 h and the absorption spectra were recorded (buffer, 50 mM HAc-NaAc, pH 5.0).

The effect of reaction time

Glucose and GOx were added to the sample solutions containing TMB and CTDI. Samples were incubated at 37 °C and the absorption spectra were recorded at a certain period of time (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 min, respectively). Final concentrations: glucose, 25 μ M; GOx, 0.5 U/mL; TMB, 500 μ M; CTDI, 20 μ M; buffer, 50 mM HAc-NaAc, pH 5.0.

Reuse of the nanofibers catalyst

CTDI, TMB and GOx were added to dilute human blood sample solutions. Samples were incubated at 37 °C for 2 h and the absorption spectra were recorded. After the reaction, the sample solutions were passed through a filter (MWCO: 100 kD) via centrifugation at 10,000 rpm for 5 min. The CTDI catalyst was separated and washed two times with water, and used for another cycle of the catalytic reaction. Final concentrations: CTDI, 20 μ M; GOx, 0.5 U/mL; TMB, 500 μ M; buffer, 50 mM HAc-NaAc, pH 5.0.

Fig. S1 Changes in emission intensity of CTDI at 492 nm in ethanol with concentration.

Fig. S2 DLS: size distribution of 10 μM CTDI in ethanol and water solution.

Fig. S3 Changes in UV-vis absorption (A) and emission (B) spectra of 5 μ M CTDI in ethanol – water solvent mixture with ethanol concentration.

Fig. S4 Changes in emission spectrum of 5 μ M CTDI in water at different temperatures. The solution temperature was increased from 20 to 90 °C.

Fig. S5 Zeta potential value changes of the CTDI nanofibers in different buffer solutions. Conditions: 25 mM buffer, NaAc-HAc, pH 3.0 - 5.0; Na₂HPO₄-NaH₂PO₄, pH 6.0 - 9.0; Na₂CO₃-NaHCO₃, pH 10.0.

Fig. S6 SEM images of the self-assembled CTDI nanofibers in ethanol.

Fig. S7 Changes in maximum absorption of TMB (at 652 nm) with CTDI concentration. Sample mixture contains 500 μ M TMB and 100 μ M H₂O₂.

Fig. S8 Changes in maximum absorption of TMB at 652 nm with assay solution buffer pH value in the presence or absence of CTDI (blank control). Conditions: TMB, 500 μ M; H₂O₂, 100 μ M; CTDI, 20 μ M; buffer, 50 mM, NaAc-HAc, pH 3.5 – 5.5; Na₂HPO₄-NaH₂PO₄, pH 6.0 – 7.0.

Fig. S9 Changes in maximum absorption of TMB at 652 nm with buffer concentration in the presence or absence of CTDI (blank control). Conditions: TMB, 500 μ M; H₂O₂, 100 μ M; CTDI, 20 μ M; buffer: 5 – 60 mM NaAc-HAc, pH 5.0.

Fig. S10 Changes in TMB maximum UV-vis absorption at 652 nm with reaction time.

Fig. S11 Double-reciprocal plots for the CTDI nanofibers catalytic reaction. (A) TMB concentration was kept constant (0.5 mM), H_2O_2 concentration was varied; (B) H_2O_2 concentration was kept constant (50 mM), TMB concentration was varied. Conditions: CTDI, 20 μ M; buffer, 50 mM, NaAc-HAc, pH 5.0.

Catalyst	Substance	K _m (mM)	V _{max} (10 ⁻⁸ M·s ⁻¹)	Ref.
CTDI	ТМВ	0.049	6.28	This work
nanofibers	H_2O_2	30.85	9.29	
GO-COOH	ТМВ	0.024	3.45	19
	H_2O_2	3.99	3.85	
HRP	ТМВ	0.275	1.24	19
	H_2O_2	0.214	2.46	
C-Dots	ТМВ	0.039	3.61	22
	H_2O_2	26.77	30.61	
C ₆₀ [C(COOH) ₂] ₂	ТМВ	0.233	0.347	32
	H ₂ O ₂	24.58	0.401	

Table S1. Comparison of the kinetic parameters (K_m and V_{max}) of the natural enzymeHRP and some carbon-based artificial peroxidase.

Fig. S12 Changes in UV-vis absorption spectrum of TMB (500 μ M) in the presence of 500 μ M glucose + 125 mU/mL GOx; 500 μ M glucose; or 125 mU/mL GOx. CTDI: 20 μ M. Blank curve is the UV-vis absorption spectrum of TMB (500 μ M) in the presence of 20 μ M CTDI.

Fig. S13 The TMB absorption intensity changes at 652 nm with GOx concentration.

Fig. S14 Changes in TMB absorption value at 652 nm with reaction time. Conditions: 500 μ M TMB, 20 μ M CTDI.

Fig. S15 Selectivity of the glucose assay. Final concentrations: TMB, 500 μ M; CTDI, 20 μ M; GOx, 0.5 U/mL; glucose, xylose, lactose, maltose, sucrose, 200 μ M each.

Fig. S16 Maximum TMB absorption value changes at 652 nm with glucose concentration in dilute blood sample. The spiked glucose concentration: 0, 10, 20, 30, $40 \ \mu M (A_{652} = 0.0063C + 0.033)$, correlation coefficient R² = 0.983).

Fig. S17 Catalytic performance of the nanofibers catalyst after several cycles of reuse in dilute blood sample. After each round of reaction, the catalyst was separated via passing through a filter (MWCO: 100 kD), and used for another cycle of the catalytic reaction. Final concentrations: CTDI, 20 μ M; GOx, 0.5 U/mL; TMB, 500 μ M; buffer, 50 mM HAc-NaAc, pH 5.0.

Fig. S18 ¹H NMR spectrum of compound 2.

Fig. S19 ¹H NMR spectrum of compound 5.

Fig. S20 ¹H NMR spectrum of CTDI.

Fig. S21 ¹³C NMR spectrum of CTDI.

Fig. S22 Electrospray ionization mass spectrum of CTDI.