Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Surpporting information

A novel H₂O₂ biosensor based on

three-dimensional micro/nano-biointerfaces

Qi Wang,^a Sisheng Hu,^b Tian Yang,^a Shangshang Ma,^a Yuhong Liu,^a Chunxue Ma,^a Mimi Wan,^{a,*} Chun Mao^{a,*}

^aNational and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China

^bState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing 210093, China.

*Email - maochun@njnu.edu.cn

Fig. S1. SEM image of cPPy film.

Fig. S2. Enlagren SEM image of hPPy film.

Table S1. Elemental surface analysis (by EDS spectrum) of MnO₂/hPPy film.

Sample	C [wt%]	O [wt%]	N [wt%]	Mn [wt%]
MnO ₂ /hPPy film	23.46	72.13	3.26	1.15

Fig. S3. Optical photographs of hPPy film (A) and MnO₂/hPPy film (B); the relaxing (C) and bending (D) conditions of MnO₂/hPPy array film.

Fig. S4. The water contact angle tests of hPPy film (A) and (B) $MnO_2/hPPy$ film.

Fig. S5. SEM images of a single cell cultured on (A) cPPy film, (B) hPPy array film.

H ₂ O ₂ biosensor ^a	Sensitivity (µA cm ⁻² µM ⁻¹)	Ref.
MnO ₂ -ERGO paper	59.0	(1)
Ag-MnO ₂ -MWCNTs nanocomposites	82.5	(2)
2D-assembly of Au NPs coated on graphene paper	236.8	(3)
Functionalized 3D graphene	169.7	(4)
Pt/rGO-CNT paper	1.4	(5)
MnO ₂ /hPPy film	280.8	This work

Table S2. Comparison of different nonenzymatic H_2O_2 sensors of sensitivity.

^aMWCNTs : multi walled carbon nanotubes; 2D : two-dimensional; NPs : nanoparticles.

H ₂ O ₂ biosensor	detection limit (µM)	Ref.
graphene/Au nanoparticles/toluidine blue O films	0.2	(6)
Pt/carbon nanotube nanocomposite	1.5	(7)
Se/Pt-nanocomposites	3.1	(8)
PtAu/graphene-sheets-MWCNTs	0.6	(9)
Pt/graphene-nanocomposite	0.8	(10)
MnO ₂ /hPPy film	0.076	This work

Table S3. Comparison of different nonenzymatic H_2O_2 sensors of detection limit.

Fig. S6. CVs of MnO₂/hPPy film (a) Freshly prepared and (b) after sixty days with 10.0 mM H_2O_2 in 0.1 M PBS at a scan rate of 100 mV \cdot s⁻¹.

References

- 1 S. Dong, J. B. Xi, Y. N. Wu, H. W. Liu, C. Y. Fu, H. F. Liu and F. Xiao, *Anal. Chim. Acta.*, 2015, **853**, 200-206.
- 2 Y. Han, J. B. Zheng and S. Y. Dong, *Electrochim. Acta.*, 2013, 90, 35-43.
- 3 F. Xiao, J. B. Song, H. C. Gao, X. L. Zan, R. Xu and H. W. Duan, ACS Nano, 2012, 6, 100-110.
- 4 F. N. Xi, D. J. Zhao, X. W. Wang and P. Chen, *Electrochem. Commun.*, 2013, 26, 81-84.
- 5 Y. M. Sun, K. He, Z. F. Zhang, A. J. Zhou and H. W. Duan, *Biosens. Bioelectron.*, 2015, 68, 358-364.
- 6 H. C. Chang, X. M. Wang, K. K. Shiu, Y. L. Zhu, J. L. Wang, Q. W. Li, B. A. Chen and H. Jiang, *Biosens. Bioelectron.*, 2013, 41, 789-794.
- 7 Z. H. Wen, S. Q. Ci and J. H. Li, J. Phys. Chem. C., 2009, 113, 13482-13487.
- 8 Y. Li, J. J. Zhang, J. Xuan, L. P. Jiang and J. J. Zhu, Electrochem. Commun., 2010, 12, 777-780.
- 9 D. Lu, Y. Zhang, S. Lin, L. Wang and C. Wang, Talanta, 2013, 112, 111-116.
- 10 F. Pagliari, C. Mandoli, G. Forte, E. Magnani, S. Pagliari, G. Nardone, S. Licoccia, M. Minieri,P. Di Nardo and E. Traversa, *ACS Nano*, 2012, 6, 3767-3775.