Electronic Supplementary Information

Exploring the Role of Molecular Chirality in Photo-Responsiveness of Dipeptide-Based Gels

Zhonghui Chen,^{1,§} Ziyu Lv,^{1,§} Guangyan Qing^{1*} and Taolei Sun^{1,2*}

 Z. Chen, Z. Lv, Prof. Dr. G. Qing, Prof. Dr. T. Sun State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
 Luoshi Road, Wuhan 430070 (P. R. China)
 *E-mail: suntl@whut.edu.cn; qing@whut.edu.cn
 Prof. Dr. T. Sun
 School of Chemistry, Chemical Engineering and Life Science
 Wuhan University of Technology
 Luoshi Road, Wuhan 430070 (P. R. China)
 \$. Z. Chen and Z. Lv contributed equally to this work.

Contents

Materials and Instruments (Page 2-3) Synthesis and Characterization (Page 4-12) Supplementary Figures (Page 13-21) Supplementary Tables (Page 22)

Materials and Instruments

Instruments

Hydrogen and carbon nuclear magnetic resonance (¹H NMR1 and ¹³C NMR) spectra were rec2orded on a 500 MHz NMR (Bruker, Germany). Mass spectra (MS) were obtained with a Finnigan LCQ advantage mass spectrometer. All synthesized chiral gelators were purified through Shimadzu LC-20A purity system (Japan) using a chiral chromatographic column (AS-H, 250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). Optical rotations were recorded on a Perkin-Elmer Model 341 polarimeter. Ultraviolet and visible spectra (UV-Vis) were recorded on a Shimadzu UV-2500 spectrophotometer. Infrared spectra were recorded on a Bruker Vertex 80v Fourier transform infrared (FT-IR) spectrometer in combination with platinum-attenuated total reflection (ATR) cell accessory. Vibrational circular dichroism (VCD) spectra were recorded on a Bruker Vertex 80v Fourier FT-IR spectrometer in combination with a PMA 50 module. Atomic force microscopy (AFM) investigation was conducted on freshly cleaved mica substrates using a Multimode 8 AFM (Bruker, USA) in a tapping mode. Scanning electron microscopy (SEM) images were obtained on a Hitachi S-4800 SEM. Circular dichroism (CD) spectra were obtained with a J-1500 CD spectrometer (JASCO, Japan). X-ray diffraction (XRD) patterns were obtained with a D8 advance X-ray diffractometer (Bruker, USA) using Cu K α irradiation source (λ =1.54056 Å) at a scan rate of 0.05° s⁻¹. A variable power Xe lamp with a 365 nm band-pass filter (Perfect Light Crop., Beijing) is used as the UV light source.

Materials

 α -L-Asp-L-Phe, α -D-Asp-D-Phe, α -L-Phe-L-Phe, α -D-Phe-D-Phe, α -L-Glu-L-Phe, α -D-Glu-D-Phe, α -L-Asp-L-Trp, α -D-Asp-D-Trp, α -L-Ala-L-Phe, α -D-Ala-D-Phe, Gly-L-Phe, Gly-D-Phe, α -L-Asp-L-Asp-L-Phe and α -D-Asp-D-Asp-D-Phe (purity: 99%) were purchased from CS-Bio Corp. (Shanghai, P. R. China) and stored at -20 °C prior to use. L-phenylalanine and D-phenylalanine were purchased from Aladdin Corp. (P. R. China). Triethylamine, deuterated chloroform and deuterated dimethylsulfoxide (DMSO) were purchased from Sigma-Aldrich Corp. (P. R. China).

Chloroform, acetone, methanol, dichloromethane, chloroacetyl chloride, 1,4-dioxane, nitromethane with high purities (99.9%) were purchased from Sinopharm Chemical Reagent Corp. (P. R. China), and chloroform was dried by molecular sieves for 24 hours prior to use.

Synthesis and Characterization

Scheme S1. Chemical structures of G1–G8. Synthetic method of L, L-G1 (upper part). Chemical structures of D, D-G1 and other seven pairs of reference gelators (G2–G8) with different di-, tri-peptide or amino acid arms (lower part).

Figure S1. Comparison of ¹H NMR (a), ¹³C NMR (b), MS (c) and IR (d) spectra of L, L-G1 (black curves) and D, D-G1 (red curves) gelators. These spectra clearly indicated that the chemical structures of L, L-G1 and D, D-G1 were identical to each other except their molecular chirality.

Synthesis and characterization of L-G2: The same procedure was adopted to prepare gelator L-**G2** except the L-Phe-methyl ester was used as reactant (yield: 48%, m.p. 143 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = +120.4° (c: 5 mg·mL⁻¹, CHCl₃). ¹H NMR (500 MHz, CDCl₃): 3.26-3.37 (m, 4H, C-C*H*₂), 3.82 (s, 6H, OC*H*₃), 5.12-5.16 (m, 2H, C**H*), 6.70 (d, *J*=7.5 Hz, 2H, CON*H*), 7.17 (d, *J*=7 Hz, 4H, Ph-*H*), 7.27-7.35 (m, 6H, Ph-*H*), 7.89-7.99 (m, 8H, Ph-*H*). ¹³C NMR (500 MHz, CDCl₃): 37.9, 52.5, 53.7, 122.8, 123.2, 127.3, 127.9, 128.1, 128.7, 129.4, 135.8, 136.1, 154.3, 166.0, 172.0. IR: (3291, 1737, 1635, 1578, 1532, 1493, 1435, 1321, 1279, 1215, 1174, 1096 cm⁻¹). MS: m/z calcd for C₃₄H₃₂N₄O₆: 592.2; found: 593.3. [M+H]⁺. Elemental analysis calcd. (%) for C₃₄H₃₂N₄O₆: C, 68.91; H, 5.44; N, 9.45. Found: C, 68.88; H, 5.42; N, 9.49.

Synthesis and characterization of D-G2: The same procedure was adopted to prepare gelator D-**G2** except the D-Phe-methyl ester was used as reactant (yield: 52%, m.p. 143 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = -120.3° (c: 5 mg·mL⁻¹, CHCl₃). ¹H NMR (500 MHz, CDCl₃): 3.26-3.37 (m, 4H, C-C*H*₂), 3.81 (s, 6H, OC*H*₃), 5.12-5.16 (m, 2H, C**H*), 6.72 (d, *J*=7.5 Hz, 2H, CON*H*), 7.17 (d, *J*=7 Hz, 4H, Ph-*H*), 7.28-7.35 (m, 6H, Ph-*H*), 7.88-7.98 (m, 8H, Ph-*H*). ¹³C NMR (500 MHz, CDCl₃): 37.9, 52.5, 53.7, 122.8, 123.2, 127.3, 127.9, 128.1, 128.7, 129.4, 135.8, 136.1, 154.3, 166.0, 172.0. IR: (3291, 1737, 1636, 1577, 1531, 1493, 1435, 1321, 1279, 1215, 1174, 1096 cm⁻¹). MS: m/z calcd for C₃₄H₃₂N₄O₆: 592.2; found: 593.2. [M+H]⁺. Elemental analysis calcd. (%) for C₃₄H₃₂N₄O₆: C, 68.91; H, 5.44; N, 9.45. Found: C, 68.87; H, 5.45; N, 9.48.

Synthesis and characterization of L, L-G3: The same procedure was adopted to prepare gelator L, L-**G3** except the L-Phe-L-Phe-methyl ester was used as reactant (yield: 63%, m.p. 285.6 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = -124.4° (c: 5 mg·mL⁻¹, DMF). ¹H NMR (500 MHz, *d*₆-DMSO): 2.95-3.13 (m, 8H, C-C*H*₂), 3.60 (s, 6H, OC*H*₃), 4.52-4.57 (m, 2H, C**H*), 4.78-4.83 (m, 2H, C**H*), 7.16-7.22 (m, 4H, Ph-*H*), 7.24-7.28 (m, 12H, Ph-*H*), 7.36 (d, *J*=7.5 Hz, 4H, Ph-*H*), 7.96-8.01 (m, 8H, Ph-*H*), 8.57 (d, *J*=7.5 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 37.1, 37.4, 46.2, 52.3, 54.2, 55.1, 122.9, 126.7, 127.1, 128.5, 128.7, 129.3, 129.6, 129.7, 137.0, 137.5, 138.7. IR (3285, 1741, 1663, 1632, 1532, 1495, 1436, 1376, 1330, 1279, 1176, 1106 cm⁻¹). MS: m/z calcd for C₅₂H₅₀N₆O₈: 886.4; found: 887.4. [M+H]⁺. Elemental analysis calcd. (%) for C₅₂H₅₀N₆O₈: C, 70.41; H, 5.68; N, 9.47. Found: C, 70.39; H, 5.63; N, 9.53.

Synthesis and characterization of D, D-G3: The same procedure was adopted to prepare gelator D, D-G3 except the D-Phe-D-Phe-methyl ester was used as reactant (yield: 67%, m.p. 285.8 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250)

mm × 4.6 mm, 5 μm, Daicel Corp., Japan). [α]20 D = +124.3° (c: 5 mg·mL⁻¹, DMF). ¹H NMR (500 MHz, *d*₆-DMSO): 2.97-3.13 (m, 8H, C-C*H*₂), 3.60 (s, 6H, OC*H*₃), 4.53-4.56 (m, 2H, C**H*), 4.78-4.83 (m, 2H, C**H*), 7.16-7.23 (m, 4H, Ph-*H*), 7.24-7.28 (m, 12H, Ph-*H*), 7.36 (d, *J*=7.5 Hz, 4H, Ph-*H*), 7.96-8.02 (m, 8H, Ph-*H*), 8.59 (d, *J*=7.5 Hz, 2H, CON*H*), 8.78 (d, *J*=8.5 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 37.1, 37.4, 46.0, 52.3, 54.2, 55.1, 122.9, 126.7, 127.1, 128.5, 128.7, 129.3, 129.6, 129.7, 137.0, 137.5, 138.7. IR (3285, 1742, 1663, 1632, 1531, 1494, 1437, 1379, 1329, 1278, 1174, 1108 cm⁻¹). MS: m/z calcd for C₅₂H₅₀N₆O₈: 886.4; found: 887.5. [M+H]⁺. Elemental analysis calcd. (%) for C₅₂H₅₀N₆O₈: C, 70.41; H, 5.68; N, 9.47. Found: C, 70.38; H, 5.64; N, 9.52.

Synthesis and characterization of L, L-G4: Same procedure was adopted to prepare gelator L, L-**G4** except the L-Glu-L-Phe-methyl ester was used as reactant (yield: 73%, m.p. 225.8 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = +18.6° (c: 5 mg·mL⁻¹, CHCl₃). ¹H NMR (500 MHz, d_6 -DMSO): 1.93-2.09 (m, 4H, C-CH₂), 2.36 (t, J_1 = J_2 =8 Hz, 4H, C-CH₂), 2.97 (m, 4H, C-CH₂), 3.56 (s, 12H, OCH₃), 4.50-4.56 (m, 4H, C*H), 7.18-7.27 (m, 10H, Ph-*H*), 8.01-8.13 (m, 8H, Ph-*H*), 8.44 (d, *J*=7.5 Hz, 2H, CON*H*), 8.64 (d, *J*=7.5 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, d_6 -DMSO): 27.3, 30.5, 37.0, 51.8, 52.3, 53.0, 54.1, 123.0, 127.0, 128.7, 129.5, 129.6, 137.0, 137.5, 153.8, 166.1, 171.7, 172.3, 173.3. IR (3290, 1734, 1664, 1635, 1533, 1494, 1436, 1381, 1333, 1296, 1196, 1173, 1106, 1012 cm⁻¹). MS: m/z calcd for C₄₆H₅₀N₆O₁₂: 878.3; found: 879.5. [M+H]⁺. Elemental analysis calcd. (%) for C₄₆H₅₀N₆O₁₂: C, 62.86; H, 5.73; N, 9.56; found: C, 62.80; H, 5.74; N, 9.63.

Synthesis and characterization of D, D-G4: The same procedure was adopted to prepare gelator D, D-G4 except the D-Glu-D-Phe-methyl ester was used as reactant (yield: 78%, m.p. 226.0 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = -18.6° (c: 5 mg·mL⁻¹, CHCl₃). ¹H NMR (500 MHz, *d*₆-DMSO): 1.93-2.09 (m, 4H, C-CH₂), 2.37 (t, *J*₁=*J*₂=8 Hz, 4H,

C-C*H*₂), 2.97-3.08 (m, 4H, C-C*H*₂), 3.57 (s, 12H, OC*H*₃), 4.49-4.54 (m, 4H, C**H*), 7.18-7.27 (m, 10H, Ph-*H*), 8.01-8.12 (m, 8H, Ph-*H*), 8.43 (d, *J*=7.5 Hz, 2H, CON*H*), 8.64 (d, *J*=8 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 27.3, 30.5, 37.0, 51.8, 52.3, 53.0, 54.1, 123.0, 127.0, 128.7, 129.5, 129.6, 137.0, 137.5, 153.8, 166.1, 171.7, 172.3, 173.3. IR (3290, 1734, 1663, 1635, 1533, 1494, 1436, 1380, 1333, 1296, 1196, 1174, 1106, 1012 cm⁻¹). MS: m/z calcd for C₄₆H₅₀N₆O₁₂: 878.3; found: 879.4. [M+H]⁺. Elemental analysis calcd. (%) for C₄₆H₅₀N₆O₁₂: C, 62.86; H, 5.73; N, 9.56; found: C, 62.81; H, 5.74; N, 9.62.

Synthesis and characterization of L, L-G5: Same procedure was adopted to prepare gelator L, L-**G5** except the L-Asp-L-Trp-methyl ester was used as reactant (yield: 65%, m.p. 143.0 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = +36.6° (c: 5 mg·mL⁻¹, CH₃OH). ¹H NMR (500 MHz, *d*₆-DMSO): 2.76-2.92 (m, 4H, C-C*H*₂), 3.12-3.22 (m, 4H, C-C*H*₂), 3.60 (d, *J*=10.5 Hz, 12H, OC*H*₃), 4.54-4.59 (m, 2H, C**H*), 4.93-4.98 (m, 2H, C**H*), 6.96 (t, *J*₁=*J*₂=7.5 Hz, 2H, Ph-*H*), 7.05 (t, *J*₁=*J*₂=7.5 Hz, 2H, Ph-*H*), 7.19 (s, 2H, Ph-*H*), 7.34 (d, *J*=8 Hz, 2H, Ph-*H*) 7.49 (d, *J*=7.5 Hz, 2H, Ph-*H*), 8.02- 8.08 (m, 8H, Ph-*H*), 8.29 (d, *J*=7.5 Hz, 2H, CON*H*), 8.81 (d, *J*=8 Hz, 2H, CON*H*), 10.85 (s, 2H, Ph-*NH*). ¹³C NMR (500 MHz, *d*₆-DMSO): 27.3, 36.1, 50.5, 52.0, 52.3, 53.8, 109.7, 111.9, 118.4, 118.9, 121.4, 123.0, 124.2, 127.6, 129.4, 136.6, 137.0, 153.9, 166.1, 170.9, 171.1, 172.5. IR (3300, 1737, 1632, 1529, 1437, 1341, 1282, 1251, 1202, 1093, 1074, 1010 cm⁻¹). MS: m/z calcd for C₄₈H₄₈N₈O₁₂: 928.3; found: 929.4. [M+H]⁺. Elemental analysis calcd. (%) for C₄₈H₄₈N₈O₁₂: C, 62.06; H, 5.21; N, 12.06; found: C, 62.03; H, 5.17; N, 12.12.

Synthesis and characterization of D, D-G5: The same procedure was adopted to prepare gelator D, D-G5 except the D-Asp-D-Trp-methyl ester was used as reactant (yield: 71%, m.p. 142.8 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = -36.7° (c: 5 mg·mL⁻¹, CH₃OH). ¹H NMR (500 MHz, *d*₆-DMSO): 2.68-2.79 (m, 4H, C-CH₂), 3.08-3.22 (m, 4H, C-CH₂), 3.59 (d, *J*=10 Hz, 12H, OCH₃), 4.55-4.59 (m, 2H, C*H), 4.91-4.95 (m, 2H, C*H), 6.95

(t, $J_1=J_2=7.5$ Hz, 2H, Ph-*H*), 7.05 (t, $J_1=J_2=7.5$ Hz, 2H, Ph-*H*), 7.15 (s, 2H, Ph-*H*), 7.34 (d, J=8 Hz, 2H, Ph-*H*) 7.49 (d, J=8 Hz, 2H, Ph-*H*), 8.01-8.08 (m, 8H, Ph-*H*), 8.34 (d, J=8 Hz, 2H, CON*H*), 8.82 (d, J=8 Hz, 2H, CON*H*), 10.89 (s, 2H, Ph-N*H*). ¹³C NMR (500 MHz, d_6 -DMSO): 27.5, 36.1, 50.4, 52.0, 52.4, 53.6, 109.7, 111.9, 118.4, 118.9, 121.4, 123.0, 124.2, 127.5, 129.4, 136.6, 137.0, 153.9, 166.1, 170.7, 171.1, 172.5. IR (3299, 1737, 1631, 1529, 1437, 1340, 1282, 1251, 1202, 1092, 1074, 1010 cm⁻¹). MS: m/z calcd for C₄₈H₄₈N₈O₁₂: 928.3; found: 929.4. [M+H]⁺. Elemental analysis calcd. (%) for C₄₈H₄₈N₈O₁₂: C, 62.06; H, 5.21; N, 12.06; found: C, 62.03; H, 5.20; N, 12.10.

Synthesis and characterization of L, L-G6: The same procedure was adopted to prepare gelator L, L-**G6** except the L-Ala-L-Phe-methyl ester was used as reactant (yield: 56%, m.p. 241.2 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = -73.5° (c: 4 mg·mL⁻¹, DMF). ¹H NMR (500 MHz, *d*₆-DMSO): 1.35 (d, *J*=7 Hz, 6H, C-C*H*₃), 3.00-3.18 (m, 4H, C-C*H*₂), 3.64 (s, 6H, OC*H*₃), 4.32-4.38 (m, 2H, C**H*), 4.77-4.82 (m, 2H, C**H*), 7.16-7.30 (m, 10H, Ph-*H*), 7,94-8.02 (m, 8H, Ph-*H*), 8.63 (d, *J*=7 Hz, 2H, CON*H*), 8.79 (d, *J*=8.5 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 17.4, 48.2, 52.3, 55.1, 122.9, 126.7, 128.6, 128.7, 129.3, 129.6, 137.0, 138.8, 153.8, 165.9, 171.9, 173.5. IR (3281, 1740, 1660, 1632, 1531, 1437, 1378, 1281, 1212, 1150, 1054, 1012 cm⁻¹). MS: m/z calcd for C₄₀H₄₂N₆O₈: 734.3; found: 735.3. [M+H]⁺. Elemental analysis calcd. (%) for C₄₀H₄₂N₆O₈: C, 65.38; H, 5.76; N, 11.44; found: C, 65.40; H, 5.73; N, 11.47.

Synthesis and characterization of D, D-G6: The same procedure was adopted to prepare gelator D, D-G6 except the D-Ala-D-Phe-methyl ester was used as reactant (yield: 51%, m.p. 240.8 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = +73.4° (c: 4 mg·mL⁻¹, DMF). ¹H NMR (500 MHz, *d*₆-DMSO): 1.35 (d, *J*=7 Hz, 6H, C-C*H*₃), 2.99-3.17 (m, 4H, C-C*H*₂), 3.65 (s, 6H, OC*H*₃), 4.32-4.38 (m, 2H, C**H*), 4.77-4.82 (m, 2H, C**H*), 7.16-7.30 (m, 10H, Ph-*H*), 7,93-8.01 (m, 8H, Ph-*H*), 8.63 (d, *J*=7 Hz, 2H, CON*H*), 8.78 (d, *J*=8.5 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 17.4, 48.3, 52.3, 55.1, 123.0, 126.7,

128.6, 128.7, 129.2, 129.5, 137.1, 138.8, 153.8, 165.9, 171.8, 173.4. IR (3281, 1740, 1660, 1632, 1531, 1437, 1378, 1281, 1212, 1150, 1054, 1012 cm⁻¹). MS: m/z calcd for $C_{40}H_{42}N_6O_8$: 734.3; found: 735.3. [M+H]⁺. Elemental analysis calcd. (%) for $C_{40}H_{42}N_6O_8$: C, 64.38; H, 5.76; N, 11.44; found: C, 64.33; H, 5.76; N, 11.48.

Synthesis and characterization of L-G7: The same procedure was adopted to prepare gelator L-**G7** except the Gly-L-Phe-methyl ester was used as reactant (yield: 41%, m.p. 216.8 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = +7.0° (c: 3 mg·mL⁻¹, DMF). ¹H NMR (500 MHz, *d*₆-DMSO): 2.93-3.07 (m, 4H, C-CH₂), 3.62 (s, 6H, OCH₃), 3.87-3.98 (m, 4H, C-CH₂), 4.50-4.54 (m, 2H, C**H*), 7.20-7.29 (m, 10H, Ph-*H*), 8.01-8.11 (m, 8H, Ph-*H*), 8.42 (d, *J*=7 Hz, 2H, CON*H*), 8.89 (t, *J*₁=*J*₂=6 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 37.3, 42.7, 52.4, 54.1, 123.0, 127.1, 128.8, 129.2, 129.6, 137.0, 137.5, 153.8, 166.1, 169.4, 172.4. IR (3292, 1751, 1690, 1644, 1519, 1485, 1435, 1376, 1312, 1270, 1215, 1131, 1106, 1080, 1055, 1034, 1011 cm⁻¹). MS: m/z calcd for C₃₈H₃₈N₆O₈: 706.3; found: 707.3. [M+H]⁺. Elemental analysis calcd. (%) for C₃₈H₃₈N₆O₈: C, 64.58; H, 5.42; N, 11.89; found: C, 64.53; H, 5.41; N, 11.95.

Synthesis and characterization of D-G7: The same procedure was adopted to prepare gelator D-**G7** except the Gly-D-Phe-methyl ester was used as reactant (yield: 43%, m.p. 216.4 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = -7.0° (c: 3 mg·mL⁻¹, DMF). ¹H NMR (500 MHz, *d*₆-DMSO): 2.93-3.07 (m, 4H, C-CH₂), 3.62 (s, 6H, OCH₃), 3.88-3.98 (m, 4H, C-CH₂), 4.50-4.54 (m, 2H, C**H*), 7.20-7.29 (m, 10H, Ph-*H*), 8.01-8.11 (m, 8H, Ph-*H*), 8.42 (d, *J*=7.5 Hz, 2H, CON*H*), 8.89 (t, *J*₁=*J*₂=6 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 37.2, 42.7, 52.4, 54.1, 123.0, 127.2, 128.8, 129.2, 129.6, 137.0, 137.5, 153.8, 166.1, 169.4, 172.4. IR (3293, 1751, 1689, 1644, 1519, 1485, 1436, 1376, 1311, 1270, 1214, 1131, 1106, 1080, 1055, 1033, 1010 cm⁻¹). MS: m/z calcd for C₃₈H₃₈N₆O₈: 706.3; found: 707.2. [M+H]⁺. Elemental analysis calcd. (%) for C₃₈H₃₈N₆O₈: C, 64.58; H, 5.42; N, 11.89; found: C, 64.56; H, 5.43; N, 11.92.

Synthesis and characterization of L, L, L-G8: The same procedure was adopted to prepare gelator L, L, L-G8 except the L-Asp-L-Asp-L-Phe-methyl ester was used as reactant (yield: 73%, m.p. 165.5 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 μ m, Daicel Corp., Japan). [α]20 D = +104.0° (c: 5 mg·mL⁻¹, CHCl₃). ¹H NMR (500 MHz, *d*₆-DMSO): 2.56-2.61 (m, 2H, C-CH₂), 2.71-2.82 (m, 4H, C-CH₂), 2.88-3.06 (m, 6H, C-CH₂), 3.54 (s, 6H, OCH₃), 3.59 (s, 6H, OCH₃), 3.62 (s, 6H, OCH₃), 4.45-4.49 (m, 2H, C*H), 4.62-4.67 (m, 2H, C*H), 4.84-4.88 (m, 2H, C*H), 7.20-7.29 (m, 10H, Ph-H), 8.01-8.11 (m, 8H, Ph-H), 8.17 (d, J=7.5 Hz, 2H, CONH), 8.30 (d, J=8.5 Hz, 2H, CONH), 8.91 (d, J=7.5 Hz, 2H, CONH). ¹³C NMR (500 MHz, *d*₆-DMSO): 35.9, 36.2, 37.0, 49.9, 50.7, 51.9, 52.0, 52.3, 54.2, 123.0, 127.0, 128.7, 129.4, 129.5, 136.8, 137.4, 153.9, 166.3, 170.6, 170.8, 170.9, 171.3, 172.0. IR (3289, 3064, 2952, 1724, 1649, 1529, 1436, 1366, 1285, 1211, 1172, 1054 cm⁻¹). MS: m/z calcd for C₅₄H₆₀N₈O₁₈: 1108.4; found: 1109.4. [M+H]⁺. Elemental analysis calcd. (%) for C₅₄H₆₀N₈O₁₈: C, 58.48; H, 5.45; N, 10.10; found: C, 58.46; H, 5.47; N, 10.13.

Synthesis and characterization of D, D, D-G8: The same procedure was adopted to prepare gelator D, D, D-G8 except the D-Asp-D-Asp-D-Phe-methyl ester was used as reactant (yield: 77%, m.p. 165.8 °C). This compound needed to be further purified through Shimadzu LC-20A purity system using an AS-H chiral chromatographic column (250 mm × 4.6 mm, 5 µm, Daicel Corp., Japan). [α]20 D = -103.9° (c: 5 mg·mL⁻¹, CHCl₃). ¹H NMR (500 MHz, *d*₆-DMSO): 2.56-2.61 (m, 2H, C-CH₂), 2.71-2.82 (m, 4H, C-CH₂), 2.88-3.06 (m, 6H, C-CH₂), 3.54 (s, 6H, OCH₃), 3.59 (s, 6H, OCH₃), 3.62 (s, 6H, OCH₃), 4.45-4.49 (m, 2H, C*H), 4.62-4.67 (m, 2H, C*H), 4.84-4.88 (m, 2H, C*H), 7.20-7.29 (m, 10H, Ph-H), 8.01-8.11 (m, 8H, Ph-H), 8.17 (d, *J*=8 Hz, 2H, CON*H*), 8.30 (d, *J*=8 Hz, 2H, CON*H*), 8.91 (d, *J*=7.5 Hz, 2H, CON*H*). ¹³C NMR (500 MHz, *d*₆-DMSO): 35.9, 36.2, 37.0, 49.9, 50.7, 51.9, 52.0, 52.3, 54.2, 123.0, 127.0, 128.7, 129.4, 129.5, 136.8, 137.4, 153.9, 166.3, 170.6, 170.8, 170.9, 171.3, 172.0. IR (3289, 3064, 2952, 1724, 1649, 1529, 1436, 1366, 1285, 1211, 1172, 1054 cm⁻¹). MS: m/z calcd for C₅₄H₆₀N₈O₁₈: 1108.4; found: 1109.4. [M+H]⁺. Elemental

analysis calcd. (%) for $C_{54}H_{60}N_8O_{18}$: C, 58.48; H, 5.45; N, 10.10; found: C, 58.43; H, 5.44; N, 10.15.

Supplementary Figures

Figure S2. Self-assembled morphologies of L, L-G1 (a, c, e, g) and D, D-G1 (b, d, f, h) in chloroform on freshly cleaved mica surface. (a, b) $0.05 \text{ mg} \cdot \text{mL}^{-1}$; (c, d) $0.1 \text{ mg} \cdot \text{mL}^{-1}$; (e, f) $0.3 \text{ mg} \cdot \text{mL}^{-1}$; (g, h) $0.5 \text{ mg} \cdot \text{mL}^{-1}$, observed by AFM in a tapping mode. According to (a, b), molecular self-assembly would not happen at the concentration of $0.05 \text{ mg} \cdot \text{mL}^{-1}$. With the increase of gelator concentrations (i.e. 0.1, 0.3 and $0.5 \text{ mg} \cdot \text{mL}^{-1}$), L, L-G1 or D, D-G1 gradually self-assembled into a large number of nanofibers with uniform length and height, the nanopatterns only differed in their packing densities of fibers. Scan bars: 2 µm.

Figure S3. The apparatus used in the UV light irradiation experiment. The gel temperature was kept at 25 °C by a temperature control plate. A variable power Xe lamp with a 365 nm band-pass filter (Perfect Light Crop., Beijing) was used as the UV light source.

Figure S4. UV-Vis spectra of L, L-G1 and D, D-G1 in chloroform irradiated by UV light (λ : 365 nm, intensity: 5 mW·cm⁻²) at different time intervals, the concentrations of solutions were 0.05 mg·mL⁻¹, obtained by Shimadzu UV-2500 spectrophotometer at 25 °C. Identical absorption intensity changes of L, L-G1 and D, D-G1 spectra in response to UV light irradiation indicated that this pair of gelators had the same speed of *trans*- to *cis*- (E/Z)-isomerization.

Figure S5. CD spectra (a) of L, L-G1 and D, D-G1 in chloroform/ methanol (v/v: 1/3, 0.05 mg·mL⁻¹), and UV-Vis (b) spectra of L, L-G1 and D, D-G1 in chloroform/ methanol (v/v: 1/3, 0.05 mg·mL⁻¹) before and after 15 min UV light (λ : 365 nm, intensity: 5 mW·cm⁻²) irradiation. Black curves refer to L, L-G1; red ones refer to D, D-G1. The CD and UV spectra indicated the identical E/Z-isomerization speeds and the mirror-symmetric conformations of L, L-G1 and D, D-G1 in chloroform/methanol (v/v: 1:3). These data further revealed that L, L-G1 and D, D-G1 possessed nearly symmetric stereo-conformation at molecular level.

Figure S6. Self-assembled morphologies of L, L- (a, c) and D, D- (b, d) G1 gels before (a, b) and after (c, d) 30 min UV light irradiation (λ : 365 nm, intensity: 5 mW·cm⁻²), observed by SEM on a larger scale. Gel formation condition: chloroform/methanol (v/v: 1/3, 5.0 mg·mL⁻¹). These data clearly indicated that significant chiral discrimination could also be observed on a large scale.

Figure S7. Self-assembled morphologies of L, L-G1 and D, D-G1 observed by AFM on a large scale. Self-assembled morphologies and section profiles along the green lines of L, L-G1 (a, c) and D, D-G1 (b, d) in chloroform (0.5 mg·mL⁻¹) before (a, b) and after (c, d) 15 min UV light irradiation (λ : 365 nm, intensity: 5 mW·cm⁻²), as observed by AFM in a large scale (Scale bars: 4 µm for (a-c) and 8 µm for (d)). These data indicated that significant chiral discrimination could also be observed on a large scale.

Figure S8. Photographs of L, L-G3 and D, D-G3 gels exposed to UV light irradiation at different time. Gel-sol transition of L, L-G3 and D, D-G3 gels (solvent: 1, 4-dioxane, concentration: 5 mg·mL⁻¹) upon UV light irradiation treatment. After 30 min, 60 min and 120 min of UV light irradiation (λ : 365 nm, intensity: 5 mW·cm⁻²), L, L-G3 and D, D-G3 still maintained gel status, which revealed the strong gelation capacities of L, L-G3 or D, D-G3 attributed to intensive π - π stacking among Phe-Phe units. Under this condition, the gelation force of L, L-G3 or D, D-G3 was far superior to the E/Z-isomerization force driven by UV light and the chiral discrimination between L, L- and D, D-G3 gels could not be detected during the E/Z-isomerization process.

Figure S9. Optimized structures of *trans*- and *cis*-isomers of D, D-G1, obtained by density functional theory (DFT) calculations at the 6-311G level (Gaussian), using chloroform as a solvent parameter. Intramolecular H-bonds with different lengths are displayed by green dotted lines.

Figure S10. Circular dichroism (CD) spectra of gelators G2—G8. CD spectra of (a) L-G2 and D-G2 (CH₂Cl₂, 0.06 mg·mL⁻¹), (b) L, L-G3 and D, D-G3 (DMSO, 0.10 mg·mL⁻¹), (c) L, L-G4 and D, D-G4 (CHCl₃, 0.10 mg·mL⁻¹), (d) L, L-G5 and D, D-G5 (CH₂Cl₂, 0.04 mg·mL⁻¹), (e) L, L-G6 and D, D-G6 (CH₂Cl₂, 0.06 mg·mL⁻¹), (f) L-G7 and D-G7 (CH₃OH, 0.06 mg·mL⁻¹), (g) L, L, L-G8 and D, D, D-G8 (CHCl₃, 0.10 mg·mL⁻¹) at 25 °C. Black curves refer to L-gelators, red curves refer to D-gelators.

Supplementary Table

Gelation abilities of **G1-G8** were tested in various solvents at room temperature by a typical heating-cooling procedure. The results are shown in Supplementary Table 1 (G=gel; P=precipitate; S=soluble; I=insoluble), and the minimum gelation concentrations are also presented ($mg \cdot mL^{-1}$).

Solvent	G1	G2	G3	G4	G5	G6	G7	G8
CHCl ₃	S	S	Р	S	G (5.2)	Р	Р	S
CH ₂ Cl ₂	Р	S	Р	S	G (4.8)	Р	Р	G (2.1)
CH ₃ OH	Р	Р	Ι	G (2.8)	S	Р	Ι	G (4.2)
CHCl ₃ /CH ₃ OH (1/3, v/v)	G (2.0)	S	Ι	G (3.8)	S	Ι	Р	S
1, 4-dioxane	S	S	G (5.0)	Р	S	S	S	Р
Nitromethane	G (4.5)	G (4.8)	Р	G (5.1)	S	Ι	S	G (2.6)
DMF	S	S	S	S	S	S	S	S
Acetone	Р	S	Ι	Р	Р	S	Р	Р
Benzene	Ι	Р	Р	Р	Р	Р	Р	Ι
DMSO	S	S	S	S	S	S	S	S

 Table S1. Gelation abilities of G1-G8 in various organic solvents or mixed solvents.