Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

A ¹⁹F NMR Probe for the Detection of β-galactosidase: Simple Structure with Low Molecular Weight of 274.2, "Turn-on" Signal without the Background, and Good Performance applicable in Cancer Cell Line

Jie Hu,^{+, ⊥} Qiong Wu,^{#, ⊥} Kai Cheng,[#] Yujun Xie,⁺ Conggang Li,^{#, *} and Zhen Li^{+, *}

⁺ Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials,

Wuhan University, Wuhan 430072, China. Email: <u>lizhen@whu.edu.cn</u> or <u>lichemlab@163.com</u>.

[#]China State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan

Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China.

Email: <u>conggangli@wipm.ac.cn</u>.

 $^{\perp}$ Contribute equally to this manuscript.

Table of Contents:

- 1. Calculation of the Probe
- 2. NMR and MS spectra
- 3. Toxicity test
- 4. Derivations of formulas
- 1. Calculation of the probe

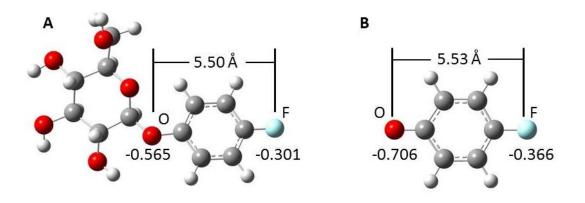
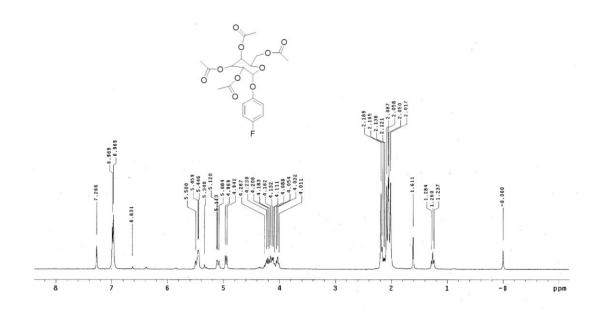
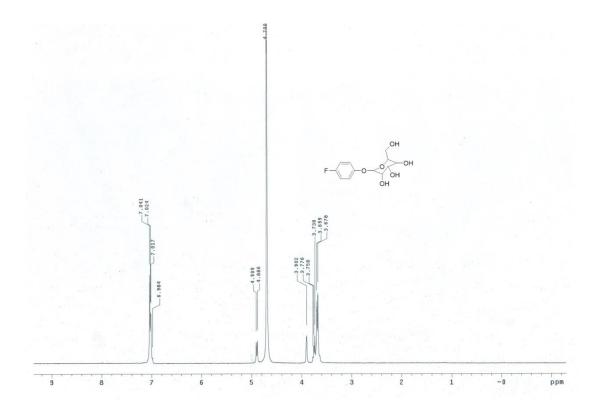
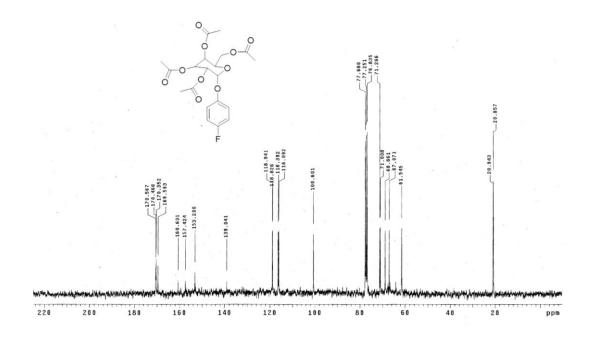
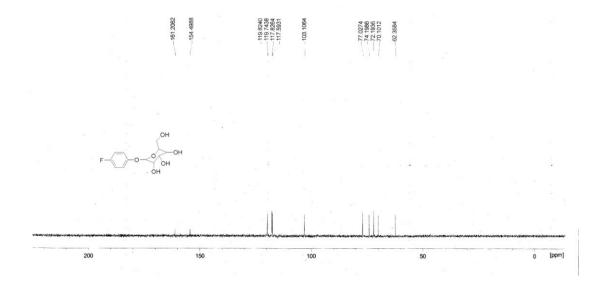
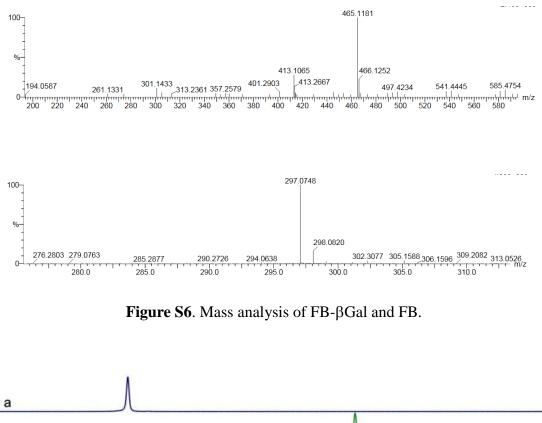




Figure S1. Mulliken charge of the fluorine and oxygen atoms and F-O distances in FB- β Gal (A) and FB (B).


2. NMR and MS spectra


Figure S2. ¹H NMR spectrum of FB- β GalAc in 100% CD₂Cl₂ at 25 °C.


Figure S3. ¹H NMR spectrum of FB- β Gal in 100% D₂O at 25 °C.

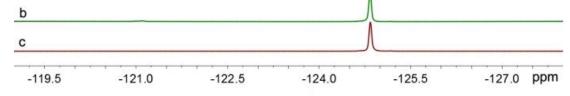


Figure S4. ¹³C NMR spectrum of FB- β GalAc in 100% CD₂Cl₂ at 25 °C.

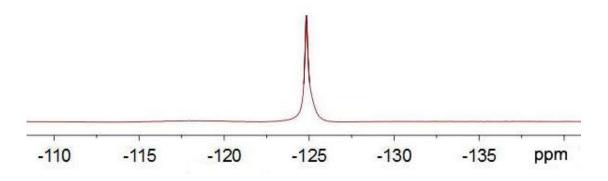


Figure S5. ¹³C NMR spectrum of FB- β Gal in 100% D₂O at 25 °C.

Figure S7. ¹⁹F NMR spectra of (a) FB- β Gal, (b) after the addition of β gal to the solution containing FB- β Gal, and (c) FB.

Figure S8. ¹⁹F NMR spectrum which was obtained after the addition of FB- β Gal at a very low concentration of 3.65×10^{-6} M in E.Coli overexpressed β -gal within 2 minutes.

3. Toxicity test

Table S1. Toxicity text of FB-βGal to Hela cells and OVCAR-3 cells by MTT methods.

	1	2	3
Mdium DMEM	0.098	0.116	0.099
HeLa cells	2.662	2.629	2.645
HeLa cells + probe (2 mM)	2.611	2.651	2.703
HeLa cells + probe (4 mM)	2.684	2.692	2,785
Mdium 1640	0.069	0.070	0.063
OVCAR-3 cells	2.196	2.151	2.148
OVCAR-3 cells + probe (2mM)	2.152	2.170	2.123
OVCAR-3 cells + probe (4mM)	2.190	2.224	2.164

Figure S9. Images taken under daylight (a) HeLa cells (b) OVCAR-3 cells (c) HeLa cells incubated with FB- β Gal (4nM) for 6 hours (d) OVCAR-3 cells incubated with FB- β Gal (4 nM) for 6 hours. Scale bar: 20 μ m.

4. Derivations of formulas

For ¹⁹F NMR spectrum, the integral are the same when the F atoms are the same per mole. And derivations of these formulas are based on the assumption that the probe and β -gal reacted with the same amount .So

$$\frac{I_{a}}{C_{0}V-CV} = \frac{I_{b}}{CV}$$

The volume was always 500 $\mu L.$ So

$$C = \frac{I_b C_0}{I_a + I_b}$$

The ratio value of the integral at -124.8 ppm to that at -121.1 ppm is

$$n = \frac{I_b}{I_a}$$

The equation becomes:

$$C = \frac{nC_0}{1+n}$$