Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

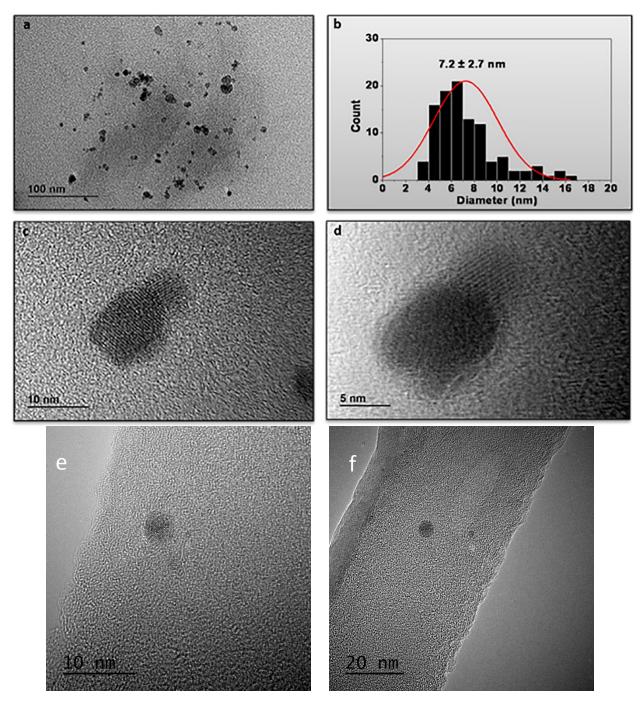
Supporting Data

Development of Tailored SPION/PNIPAM Nanoparticles by ATRP for Dually Responsive Doxorubicin Delivery and MR Imaging

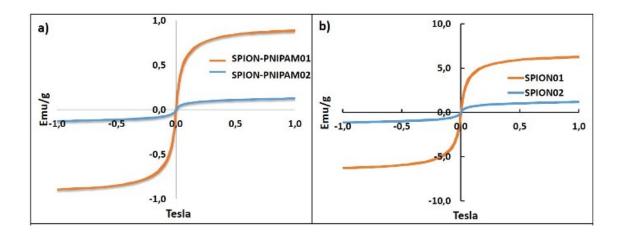
Yasemin Yar^a, Rouhollah Khodadust^b, Yunus Akkoc^c, Devrim Gozuacik^{c,d}, Mustafa Utkur^e, Emine Ulku Saritas^e, Havva Yagci Acar, ^{a,b,d,f}*

^aKoc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey

^bKoc University, Department of Chemistry, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey


^cSabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Programs, Istanbul, Turkey

^dSabanci University, Center of Excellence for Functional Surfaces and Interfaces for Nano


Diagnostics (EFSUN), Istanbul, Turkey

^eDepartment of Electrical & Electronics Engineering and National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey

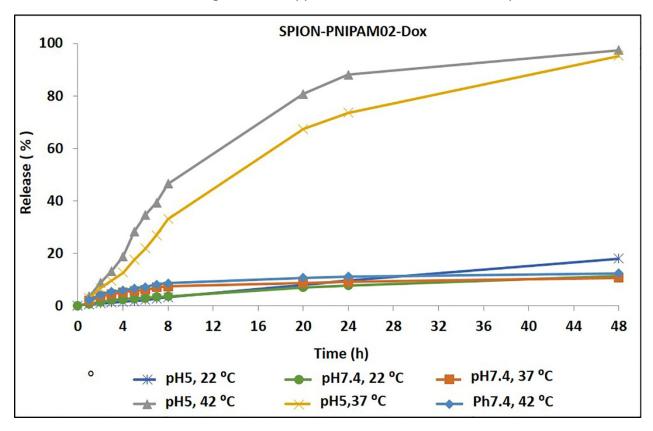

fKoc University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, Istanbul, Turkey. *Corresponding Author: Havva Yağcı Acar: fyagci@ku.edu.tr

Fig S1. TEM images of nanoparticles at different magnification (S1a, c, and d). Crystal size of the iron oxide core was determined as 7.2 ± 2.7 (S1b). TEM images of SPION-PNIPAM01-DOX nanoparticles.

Fig S2. (a) Magnetization of SPION-PNIPAM01 and SPION-PNIPAM02 as a function of magnetic field applied on total content of nanoparticles. **(b)** Magnetization of SPION-PNIPAM01 and SPION-PNIPAM02 as a function of magnetic field applied on SPION content of nanoparticles.

Fig S3. Release of Dox from SPION-PNIPAM02 in different solutions with pH 5 and pH 7.4 and 22°C, 37°C and 42°C temperature.

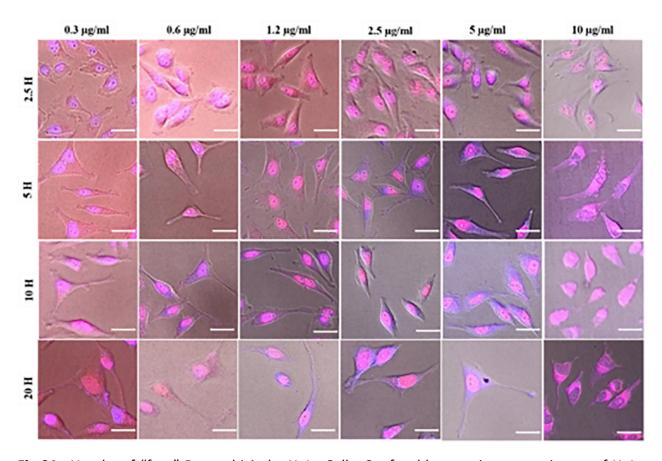


Fig S4. Uptake of "free" Doxorubicin by HeLa Cells. Confocal laser microscopy image of HeLa cells incubated with different concentration (0.3, 0.6, 1.2, 2.5, 5 and 10 μ g/ml) of Doxorubicin at different time points (2.5h, 5h, 10h and 20 h) at 37°C (Scale bar 40 μ m).