Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

## **Supporting Information**

## Hyaluronic acid cloaked oleic acid nanoparticle inhibits MAPK signaling with sub-cellular DNA damage in colon

## cancer

Sandeep Palvai, Meenu Mahesh Kuman, Sudipta Basu\* Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India Email: <u>sudipta.basu@iiserpune.ac.in</u>



**Fig. S1**: Characterization of OA-AZD-CDDP-NPs by (a) DLS, (b) seta potential, (c) FE-SEM and (d) AFM.



Fig. S2: Schematic representation of the plausible mechanism of self-assembly of OA-AZD-CDDP-NP.



Fig. S3: AFM analysis of HA-OA-NPs to show the diameter and height of the nanoparticles.



**Fig. S4**: (a-b) Concentration versus absorbance calibration graph of AZD6244 and cisplatin at characteristic  $\lambda_{max} = 273$  nm and 706 nm respectively, determined by UV-Vis spectroscopy. (c) Loading of AZD6244 and cisplatin in HA-OA-NPs determined by the calibration graph.





Fig. S5: EDX spectra of HA-OA-NPs to confirm the presence of AZD6244 and cisplatin in the same particle.



**Fig. S6**: Stability of HA-OA-NPs in DMEM cell culture media with 10% FBS at 37 °C over 96h determined by (a) hydrodynamic diameter and (b) polydispersity index (PDI).



**Fig. S7**: Flow cytometry analysis of MCF7, DLD-1 and HCT-116 cells to determine the cell surface expression of CD44 receptors by FITC-labeled anti-human CD44 antibody.



**Fig. S8**: Flow cytometry analysis of HCT-116 cells pre-treated with chlorpromazine, amiloride and genistein followed by treatment with FITC-HA-OA-NPs.



**Fig. S9**: Flow cytometry analysis of HCT-116 cells after treatment with FITC-HA-OA-NPs at 4°C and 37°C.



**Fig. S10**: Quantification of expression of (a) p-ERK1, (b) p-ERK2 and (c) γH2AX from western blot analysis in HCT-116 cells after treatment with HA-OA-NPs for 24h.



**Fig. S11**: Concentration dependent cell viability of OA-AZD-CDDP-NPs in HCT-116 and DLD-1 colon cancer cells at 24h post-incubation determined by MTT assay.



**Fig. S12**: Concentration dependent cell viability of (a) HA-OA-AZD-CDDP-NPs and (b) OA-AZD-CDDP-NPs in MCF7 breast cancer cells at 24h post incubation determined by MTT assay.

| OA-<br>AZD<br>(mg) | OA-<br>CDDP<br>(mg) | OA-ED-<br>NH2<br>(mg) | Hyaluronic<br>acid (HA)<br>(mg) | Size<br>(nm) | PDI        | Zeta<br>Potential<br>(mV) | AZD : CDDP<br>(Molar<br>ratio) | Loading of<br>drugs (uM)<br>(AZD : CDDP) |
|--------------------|---------------------|-----------------------|---------------------------------|--------------|------------|---------------------------|--------------------------------|------------------------------------------|
| 1                  | 1                   | 2                     | 0.2                             | 178.25±8     | 0.321±0.08 | -25.5±5                   | 0.68:1                         | 200.52+<br>365.41<br>( 0.54:1)           |
| 1                  | 0.75                | 2                     | 0.2                             | 154.25±6     | 0.221±0.06 | -43.8±3                   | 0.97:1                         | 194.24+<br>241.56<br>(0.8:1)             |
| 1                  | 0.5                 | 1.5                   | 0.2                             | 198.25±5     | 0.521±0.96 | -22.5±8                   | 1:0.69                         | 220.24+<br>105.01<br>(1:0.47)            |
| 1                  | 0.25                | 1.5                   | 0.2                             | 228.25±15    | 0.621±1.6  | -32.5±3                   | 1:0.34                         | 173.04+<br>30.45<br>(1:0.17)             |

**Table S1**: Optimization of size, zeta potential, PDI and dual drug loading in engineering HA-OA-NPs.