Supporting Information

Two-photon photodynamic ablation of tumor cells by mitochondria-targeted iridium(III) complexes in aggregate states

Kangqiang Qiu,^a Miao Ouyang,^{a,b} Yukang Liu,^a Huaiyi Huang,^a Chaofeng Liu,^a Yu Chen,^a Liangnian Ji^a and Hui Chao*^a

 ^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
 ^bSchool of Chemistry and Bioengineering, Hechi University, Yizhou, 546300, P. R. China

Tel: +86 20 84110613; Fax: +86 20 84112245; Email: ceschh@mail.sysu.edu.cn

Table of Content

Scheme	S1. Synthetic pathway	S2
Fig. S1	ESI-MS spectrum and ¹ H NMR spectrum of ligand	
Fig. S2	ESI-MS spectrum and ¹ H NMR spectrum of Ir1	S4
Fig. S3	ESI-MS spectrum and ¹ H NMR spectrum of Ir2	S5
Fig. S4	The sizes of the complexes in aggregate states at 500 μ M	S6
Fig. S5	The emission spectra of the complexes at 1 μ M	
Fig. S6	The internalized iridium of the LO2 cells	
Fig. S7	Co-localization of Ir1-Ir2 and LTR	S9
Fig. S8	Co-localization of Ir1-Ir2 and ERTR	S10
Fig. S9	OPM and TPM images of Ir1-Ir2 in HeLa MCTSs	S11
Table S	I. Crystallographic data for the Ir(III) complexes	
Table S2	2. Selected bond lengths and bond angles for Ir1	S13
Table Sa	3. Selected bond lengths and bond angles for Ir2	S14
Table S4	4. Photophysical data for Ir1-Ir2	S15

Scheme S1. Synthetic pathway of **Ir1-Ir2**. (i) CH₃COONH₄, aniline, CH₃COOH, reflux, 12 h, 45%; (ii) DMF, reflux, 12 h, 71-73%.

Fig. S1 ESI-MS spectrum and ¹H NMR spectrum of ligand L.

88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.85

Fig. S2 ESI-MS spectrum and ¹H NMR spectrum of **Ir1**.

Fig. S3 ESI-MS spectrum and ¹H NMR spectrum of **Ir2**.

Fig. S4 The sizes of the complexes in aggregate states in water and DMSO (v/v = 95:5) at 500 μ M before and after 3 days.

Fig. S5 The emission spectra of the complexes in water with different fractions of DMSO at 1 μ M.

Fig. S6 The internalized iridium of the LO2 cells was quantified by ICP-MS with different incubation time.

Fig. S7 OPM and TPM images of HeLa cells co-labeled with **Ir1-Ir2** (1 μ M, 4 h, OPM: $\lambda_{ex} = 405$ nm, TPM: $\lambda_{ex} = 740$ nm, $\lambda_{em} = 550 \pm 20$ nm) and LTR (50 nM, 0.5 h, $\lambda_{ex} = 543$ nm, $\lambda_{em} = 610 \pm 20$ nm). Overlay: Overlay of the 2nd and 4th columns. Scale bar: 20 μ m.

Fig. S8 OPM and TPM images of HeLa cells co-labeled with **Ir1-Ir2** (1 μ M, 4 h, OPM: $\lambda_{ex} = 405$ nm, TPM: $\lambda_{ex} = 740$ nm, $\lambda_{em} = 550 \pm 20$ nm) and ERTR (1 μ M, 0.5 h, $\lambda_{ex} = 543$ nm, $\lambda_{em} = 610 \pm 20$ nm). Overlay: Overlay of the 2nd and 4th columns. Scale bar: 20 μ m.

Fig. S9 OPM and TPM images of Ir1-Ir2 in HeLa MCTSs (1 μ M, 12 h, OPM: $\lambda_{ex} =$ 405 nm, TPM: $\lambda_{ex} =$ 740 nm, $\lambda_{em} =$ 550 ± 20 nm).

Complexes	Ir1	Ir2
Empirical formula	$C_{48}H_{29}F_{10}IrN_5P$	$C_{48}H_{33}F_6IrN_5P$
Formula weight	1088.93	1016.96
Temperature /K	120(2)	120(2)
Wavelength/Å	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
<i>a</i> / Å	9.6327(4)	9.6803(5)
b / Å	9.8230(4)	10.0240(5)
<i>c</i> / Å	23.0384(9)	22.9480(13)
β'°	79.9150(10)	100.758(2)
<i>V /</i> Å ³	2101.08(15)	2141.9(2)
Ζ	2	2
$ ho_{\text{cald}}/\text{g.cm}^{-3}$	1.721	1.577
Absorption coefficient /mm ⁻¹	3.302	3.22
F (000)	1068	1004
Crystal size (mm ³)	$0.202 \times 0.182 \times 0.176$	$0.188 \times 0.146 \times 0.052$
θ range for data collection /°	2.657 to 27.510	2.521 to 27.521
Reflections collected / unique	$22030 / 9514 [R_{(int)} = 0.0258]$	44598 / 9812 [<i>R</i> _(int) = 0.0355]
Completeness to $\theta = 26.000^{\circ}$	99.30%	99.80%
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	9514 / 0 / 586	9812 / 0 / 550
Goodness-of-fit on F^2	1.06	1.053
R_1 , wR_2 indices $[I > 2\sigma(I)]$	0.0301, 0.0515	0.0238, 0.0480
R_1 , wR_2 indices (all data)	0.0382, 0.0533	0.0292, 0.0493
Largest diff. peak and hole /e.	1.364 and -1.348	0.874 and -1.021
Å-3		

 Table S1. Crystallographic Data for the Ir(III) complexes

Bond	Dist. (Å)	Bond	Dist. (Å)			
Ir(1)-C(1)	2.002(3)	Ir(1)-C(12)	2.014(3)			
Ir(1)-N(1)	2.038(3)	Ir(1)-N(2)	2.045(3)			
Ir(1)-N(3)	2.141(2)	Ir(1)-N(4)	2.211(2)			
Angle	(°)	Angle	(°)			
C(1)-Ir(1)-C(12)	84.15(11)	C(1)-Ir(1)-N(1)	80.52(12)			
C(12)-Ir(1)-N(1)	95.81(11)	C(1)-Ir(1)-N(2)	98.30(12)			
C(12)-Ir(1)-N(2)	80.18(12)	N(1)-Ir(1)-N(2)	175.93(10)			
C(1)-Ir(1)-N(3)	94.83(10)	C(12)-Ir(1)-N(3)	175.35(12)			
N(1)-Ir(1)-N(3)	88.48(9)	N(2)-Ir(1)-N(3)	95.51(9)			
C(1)-Ir(1)-N(4)	170.30(10)	C(12)-Ir(1)-N(4)	105.47(10)			
N(1)-Ir(1)-N(4)	96.97(9)	N(2)-Ir(1)-N(4)	84.83(9)			
N(3)-Ir(1)-N(4)	75.68(8)					

Table S2. Selected bond lengths (Å) and bond angles (°) for Ir1

Bond	Dist. (Å)	Bond	Dist. (Å)			
Ir(1)-C(12)	2.007(2)	Ir(1)-C(1)	2.017(2)			
Ir(1)-N(2)	2.041(2)	Ir(1)-N(1)	2.053(2)			
Ir(1)-N(3)	2.143(2)	Ir(1)-N(4)	2.2142(19)			
Angle	(°)	Angle	(°)			
C(12)-Ir(1)-C(1)	84.56(10)	C(12)-Ir(1)-N(2)	80.59(10)			
C(1)-Ir(1)-N(2)	95.96(9)	C(12)-Ir(1)-N(1)	98.11(10)			
C(1)-Ir(1)-N(1)	80.19(10)	N(2)-Ir(1)-N(1)	176.05(8)			
C(12)-Ir(1)-N(3)	95.72(9)	C(1)-Ir(1)-N(3)	175.20(9)			
N(2)-Ir(1)-N(3)	88.82(8)	N(1)-Ir(1)-N(3)	95.03(8)			
C(12)-Ir(1)-N(4)	171.10(9)	C(1)-Ir(1)-N(4)	104.30(8)			
N(2)-Ir(1)-N(4)	97.35(8)	N(1)-Ir(1)-N(4)	84.49(7)			
N(3)-Ir(1)-N(4)	75.53(7)					

Table S3. Selected bond lengths (Å) and bond angles (°) for Ir2

	The monomer states (CH ₃ CN)			The aggregate states (H ₂ O)					
Complexes	$\lambda_{abs}{}^a$	$\lambda_{\rm em}^{\ c}$	τ/ns ^e	δ/GM ^g	-	$\lambda_{abs}{}^a$	$\lambda_{\rm em}^{~~c}$	τ/ns ^e	δ/GM ^g
	(ε^b)	$(\phi_{em}{}^d)$	$(\varphi^{/1}O_2^f)$			(ε^b)	(φ_{em}^{d})	$(\varphi^{/1}O_2^f)$	
I-1	374	538	613	n.d. ^h	378	544	4242	114.4	
Iri	(2.2)	(0.3%)	(0.29)			(2.4)	(6.8%)	(0.65)	114.4
1-2	363	544	159	n.d.		378	556	1654	07.1
112	(1.1)	(0.8%)	(0.51)			(1.4)	(15.1%)	(0.50)	97.1

Table S4. Photophysical data for Ir1-Ir2 at 298 K

^{*a*} λ_{abs} maximum values of the one-photon absorption in nm. ^{*b*} Extinction coefficient in 1×10⁴ M⁻¹×cm⁻¹. ^{*c*} λ_{em} maximum values of the one-photon emission spectra in nm. ^{*d*} Phosphorescent quantum yields. ^{*e*} Phosphorescence lifetime. ^{*f*} $^{1}O_{2}$ quantum yields. The $^{1}O_{2}$ quantum yield of the reference [Ru(bpy)₃]²⁺ was in 0.56 in aerated CH₃CN and 0.18 in aerated water. ^{*g*} Two-photon absorption cross section at 740 nm. ^{*h*} Not determined.