N, S co-doped carbon dots as stable bio-imaging probe for detections of intracellular temperature and antibiotic

Supporting information

Fig. S1. PL spectra of N, S-CDs with excitation wavelengths from 290 to 430 nm.

Fig. S2. The luminescence decays of N, S-CDs.

Fig. S3. The EDX spectrum of N, S-CDs.

Fig. S4. PL spectra (excitation wavelength 390 nm) of N, S-CDs at various temperatures during two processes: (a) heating and (b) cooling.

Fig. S5. Confocal fluorescence images of HeLa cells with N, S-CDs under different laser irradiation time (N, S-CDs concentration: 100 μ g·mL⁻¹, incubation time: 24 h). All scale bars represent 25 μ m. (Emission was collected at 415-550 nm; excited at 405 nm)

Fig. S6. PL spectra of N, S-CDs with TC detection concentrations from 1.39×10^{-9} to $1.39 \times 10^{-5} \mu$ M.

Fig. S7. The fluorescence quenching efficiency in the presence of TC, amino acids and common ions. (The concentration for TC is 10 μ M, and for each other guests is 0.05 M).

Fig. S8. FT-IR spectra of N, S-CDs (red trace) and N, S-CDs-TC system (blue trace). The inset is the enlarged spectral region from 3750 cm⁻¹ to 3150 cm⁻¹.

Table S1. Determination of TC using HPLC and the fluorescence detection method (RE: fluorescence detection vs. HPLC detection.).

Sample	HPLC	Fluorescence detection(µM)	Relative error (%)
	(µM)	N, S-CDs	RE
1	247	240 ± 7	-2.83
2	195	187 ± 3	-4.10
3	142	134 ± 4	-5.63
4	103	92 ± 3	-10.6
5	57	48 ± 4	-15.7