Electronic Supplementary Information (ESI)

A glucose-activatable trimodal glucometer selfassembled from glucose oxidase and MnO₂ nanosheets for diabetes monitoring

Jin-Long Chen,*^{abc†} Li Li,^{ac†} Shuo Wang, ^{ac} Xiao-Yan Sun,^d Lu Xiao,^{ac} Jia-Shu Ren,^{ac} Bin Di,^{ac} and Ning Gu*^b

^aDepartment of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China

^bJiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. Chin

^cKey Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, P. R. China

^dLaboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Chinese Medicine,

Nanjing 210000, P. R. China

[†]Jin-Long Chen and Li Li contributed equally to this work

*Corresponding Author, chenjl_4@hotmail.com; guning@seu.edu.cn

- 1. **Fig. S1** (A) UV-vis spectra of reaction mixture as time-course from 0 to 60 min. (B) UV-vis monitoring of the conversion of KMnO₄ ($\lambda_{abs} = 526$ nm) to MnO₂ NSs ($\lambda_{abs} = 374$ nm) from 0 to 60 min (C) Time-course photographs of the reaction mixture from 0 to 60 min
- Fig. S2 Schematic illustration for the lauric acid and SDS co-modified MnO₂ nanosheets formation by in situ redox reaction between KMnO4 and dodecanol on the surface performed soft-template
- 3. Fig. S3 (A) Photographs of dispersion of MnO₂ NSs in conventional solvents (B) Stability of aqueous solutions of MnO₂ NSs in various pH medium. (C) UV-visible spectra for water-dispersions of various concentrations of MnO₂ NSs (D) The absorbance at 374 nm is plotted against the various concentrations of MnO₂ NSs.
- 4. Fig. S4 The overall fold of GOD obtained from the Protein Data Bank (PDB ID: 1GAL). The theoretical height of compact (B) and stretched (C) structure of single-layer MnO₂ NSs co-modified with lauric acid and SDS, (D) The structures of lauric acid and SDS simulated with ChemBioOffice 2010 (Cambridge Soft Corporation). The theoretical height of single-layer of MnO₂ NSs is about 0.52 nm.
- 5. **Fig. S5** pH dependent redoxable reactivity of the as-obtained MnO₂ NSs to ascorbic acid (A), L-glutathione (B), citric acid (C) and H₂O₂ (D), respectively.
- 6. Fig. S6 (A) pH-dependent H₂O₂-decomposition of MnO2 NSs. (B) Effect of temperature (B) and time (C) on the decreased absorbance of the presented glucometer composition of 1.5 μg mL-1 GOD and 35 μM MnO₂ NSs in the presence of 20 μM glucose.

- 7. **Fig. S7** (A) Normalized fluorescence excitation (black curve) and emission (red curve) spectra of GOD and UV-vis absorption spectrum of MnO₂ nanosheets (blue curve); Fluorescence spectra of GOD (10 μ g mL⁻¹) with the addition of various concentrations of MnO₂ nanosheets. λ_{ex} = 290 nm. The concentration of MnO₂ nanosheets was increased from upper to bottom (Insets: Plots of F₀/F against MnO₂ NSs concentration. By contrast of emission profile of GOD before and after addition of MnO₂ NSs).
- Table S1. Comparison of the performances of designated biosensors integrated GOD with conventional nanomaterials for glucose sensing
- Fig. S8 FT-IR spectra of MnO2 NSs, GOD and the glucometer composing of GOD and MnO2 NSs, respectively
- Table S2 Enzymatic conformation of free GOD and GOD noncovalent immobilization on MnO₂ NSs by use of CDpro software
- Fig. S9 (A) Absorption Spectra of mice blood serum samples dilution by different folds (B) Spectra of MnO₂ NSs in the GOD, serum samples by 1200 dilution folds and GOD-MnO₂ NSs in the presence of diluted serum samples.

Fig. S1 (A) UV-vis spectra of reaction mixture as time-course from 0 to 60 min. (B) UVvis monitoring of the conversion of KMnO₄ ($\lambda_{abs} = 526 \text{ nm}$) to MnO₂ NSs ($\lambda_{abs} = 374 \text{ nm}$) from 0 to 60 min (C) Time-course photographs of the reaction mixture from 0 to 60 min

Fig. S2 Schematic illustration for the lauric acid and SDS co-modified MnO2 nanosheets formation by in situ redox reaction between KMnO4 and dodecanol on the surface performed soft-template

Fig. S3 (A) Photographs of dispersion of MnO_2 NSs in conventional solvents (B) Stability of aqueous solutions of MnO_2 NSs in various pH medium. (C) UV-visible spectra for water-dispersions of various concentrations of MnO_2 NSs (D) The absorbance at 374 nm is plotted against the various concentrations of MnO_2 NSs.

Fig. S4 The overall fold of GOD obtained from the Protein Data Bank (PDB ID: 1GAL). The theoretical height of compact (B) and stretched (C) structure of single-layer MnO_2 NSs co-modified with lauric acid and SDS, (D) The structures of lauric acid and SDS simulated with ChemBioOffice 2010 (Cambridge Soft Corporation). The theoretical height of single-layer of MnO_2 NSs is about 0.52 nm.

Fig. S5 pH dependent redoxable reactivity of the as-obtained MnO_2 NSs to ascorbic acid (A), L-glutathione (B), citric acid (C) and H_2O_2 (D), respectively.

Fig. S6 (A) pH-dependent H₂O₂-decomposition of MnO₂ NSs. (B) Effect of temperature (B) and time (C) on the decreased absorbance of the presented glucometer composition of 1.5 μ g mL⁻¹ GOD and 35 μ M MnO₂ NSs in the presence of 20 μ M glucose.

Fig. S7 (A) Normalized fluorescence excitation (black curve) and emission (red curve) spectra of GOD and UV-vis absorption spectrum of MnO_2 nanosheets (blue curve); Fluorescence spectra of GOD (10 µg mL⁻¹) with the addition of various concentrations of MnO_2 nanosheets. λ_{ex} = 290 nm. The concentration of MnO_2 nanosheets was increased from upper to bottom (Insets: Plots of F₀/F against MnO_2 NSs concentration. By contrast of emission profile of GOD before and after addition of MnO_2 NSs).

Nanomaterial	enzyme	$K_{\rm m}$	Dotostion modo	LOD	Real	refs		
S	immobilization	(mM)	Delection mode	(μM)	samples			
Gold NPs	covalent	3.74	spectrophotometry	-	NO	1		
Fe₃O₄ NPs	covalent	6.8	fluorescence	-	NO	2		
CdTe QDs	covalent	0.45	fluorescence	0.1	NO	3		
PMMA	agyalant	13.79	spectrophotometry	-	NO	4		
microbeads	covalent							
Mn-doped	a su se la set	0.7	phosphorescence	3	Human	5		
ZnS QDs	covalent				serum	0		
ZrO ₂ /		3.14	amperometr	10	Real blood	6		
christosan	noncovalent							
ZnO nanorods	noncovalent	2.90	amperometr	10	NO	7		
CNT	covalent	-	amperometr	80	NO	8		
MnO₂ NPs	Coimmobilizatio n	-	field-effect transistor	20	NO	9		
MnO ₂	noncovalent	0.051	spectrophotometry	0.1	Rat serum	This		
nanosheets	noncovalent					work		

 Table S1. Comparison of the performances of designated biosensors integrated

 GOD with conventional nanomaterials for glucose sensing

Fig. S8 FT-IR spectra of MnO_2 NSs, GOD and the glucometer composing of GOD and MnO_2 NSs, respectively.

immobilization on MnO ₂ NSs by use of CDpro software								
Enzymatic	Free GOD		Immobilized GOD					
conformation	Fraction	Percentage	Fraction	Percentage				
		of content		of content				
α -helix	1.230	25.7%	0.985	17.3%				
β-sheet	1.231	25.7%	1.741	30.6%				
β -turn	0.950	19.8%	1.221	21.4%				
Radom coil	1.380	28.8%	1.758	30.7%				
Total	4.791	100%	5.705	100%				
α/β		1.0		0.672				

Table S2 Enzymatic conformation of free GOD and GOD noncovalent immobilization on MnO_2 NSs by use of CDpro software

Fig. S9 (A) Absorption Spectra of mice blood serum samples dilution by different folds (B) Spectra of MnO_2 NSs in the GOD, serum samples by 1200 dilution folds and GOD- MnO_2 NSs in the presence of diluted serum samples.

Reference

- Pandey, P.; Singh, S. P.; Arya, S. K.; Gupta, V.; Datta, M.; Singh, S.; Malhotra, B. D., Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity. *Langmuir* 2007, 23 (6), 3333-3337.
- Rossi, L. M.; Quach, A. D.; Rosenzweig, Z., Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. *Anal. Bioanal. Chem.* 2004, 380 (4), 606-613.
- Cao, L.; Ye, J.; Tong, L.; Tang, B., A New Route to the Considerable Enhancement of Glucose Oxidase (GOx) Activity: The Simple Assembly of a Complex from CdTe Quantum Dots and GOx, and Its Glucose Sensing. *Chemistry – A European Journal* 2008, 14 (31), 9633-9640.
- 4. Bulmuş, V.; Ayhan, H.; Pişkin, E., Modified PMMA monosize microbeads for glucose oxidase immobilization. *Chemical Engineering Journal* **1997**, *65* (1), 71-76.
- Wu, P.; He, Y.; Wang, H.-F.; Yan, X.-P., Conjugation of Glucose Oxidase onto Mn-Doped ZnS Quantum Dots for Phosphorescent Sensing of Glucose in Biological Fluids. *Anal. Chem.* 2010, 82 (4), 1427-1433.
- Yang, Y.; Yang, H.; Yang, M.; liu, Y.; Shen, G.; Yu, R., Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix. *Analytica Chimica Acta* 2004, 525 (2), 213-220.
- Wei, A.; Sun, X. W.; Wang, J. X.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z. L.; Huang, W., Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. *Applied Physics Letters* **2006**, *89* (12), 123902.
- Lin, Y.; Lu, F.; Tu, Y.; Ren, Z., Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. *Nano Letters* 2004, 4 (2), 191-195.
- 9. Luo, X.-L.; Xu, J.-J.; Zhao, W.; Chen, H.-Y., A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. *Biosensors and Bioelectronics* **2004**, *19* (10), 1295-1300.