**Electronic Supplementary Information** 

## Large-pore silica particles with antibody-like biorecognition sites for efficient protein separation

Zulei Zhang<sup>a,b</sup>, Xingdi Zhang<sup>a</sup>, Dechao Niu<sup>a</sup>, Yongsheng Li<sup>a</sup>\* and Jianlin Shi<sup>a,c</sup>

<sup>a</sup> Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

<sup>b</sup> School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China

<sup>c</sup> State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

\*Corresponding author Email: <u>ysli@ecust.edu.cn</u> Fax: +86-21-64250740; Tel: +86-21-64250740

## 1. Equations

The pseudo-first-order rate equation is listed as follows:

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t \tag{1}$$

where  $Q_e$  and  $Q_t$  (mg/g) are the amount of BSA adsorbed on MI-LPSPs at equilibrium and time t,

respectively.  $k_1$  (cm<sup>-1</sup>) is the rate constant of pseudo-first-order model.

The pseudo-second-order rate equation is listed as follows:

$$\frac{t}{Q_{t}} = \frac{1}{k_{2}Q_{e}^{2}} + (\frac{1}{Q_{e}})t$$
(2)

where  $k_2$  is the rate constant of pseudo-second-order model.

Langmiur adsorption equation has the linear form as following:

$$\frac{C_e}{q_e} = \frac{1}{k_L q_{\max}} + \frac{C_e}{q_{\max}}$$
(3)

where  $C_e$  is the equilibrium concentration of BSA (mg/mL);  $q_e$  denotes the adsorption capacity of MI-LPSPs at equilibrium (mg/g), and  $q_{max}$  is the maximum adsorption capacity (mg/g).  $k_L$  is the Langmuir constant (L/g) that relates to adsorption energy and affinity of binding sites.

The linear mathematical expression of the Freundlich model is presented as:

$$\log q_e = \log k_F + (n) \log C_e \tag{4}$$

 $k_F$  (g<sup>1-n</sup> L<sup>n</sup>/g) is Freundlich constant related to the adsorption capacity of the adsorbent, and *n* signifies adsorption intensity.

## 2. Supporting data



Fig. S1 Wide-angle (a) and low-angle (b) XRD spectra of LPSPs and MI-LPSPs



Fig. S2 (a) Standard curve of BSA solution; (b) UV-vis spectra of BSA desorption from MI-LPSPs



Fig. S3 The proposed mechanism for synthesis of LPSPs

① TEOS and P123 combine to form organic-inorganic composite in aqueous solutions with relatively low acid concentration at 80 °C; ② In the early stage of hydrothermal treatment at 160 °C, PEO shrink into the hydrophobic region of micelles to expand the size of hydrophobic region; ③ With the increase of time of hydrothermal treatment at 160 °C, organic template are gradually removed because of weaker hydrogen bond

interaction. Simultaneously, mesoporous channel were merged to form larger mesopores, and abundant Si-OH groups are maintained.



Fig. S4 The effects of (A) NaCl concentrations (desorption period: 10 h, solution volume: 20 mL, pH: 7.0) and (B) desorption period (NaCl concentration: 1.0 mol/L, solution volume: 20 mL, pH: 7.0) on the desorption of BSA from MI-LPSPs

Table. S1 Physi-chemical parameters of LPSPs, MI-LPSPs-BSA and MI-LPSPs

| Samples      | Specific surface area (m <sup>2</sup> /g) | Pore volume (cm <sup>3</sup> /g) | Average pore diameter (nm) |
|--------------|-------------------------------------------|----------------------------------|----------------------------|
| LPSPs        | 472.8                                     | 2.35                             | 23.8                       |
| MI-LPSPs-BSA | 303.2                                     | 0.64                             | 5.6                        |
| MI-LPSPs     | 337.5                                     | 0.81                             | 8.8                        |

Table S2 Kinetic parameters for BSA adsorption by MI-LPSPs and NI-LPSPs

| Adsorbent | $q_{exp} \ (mg/g)$ | Pseudo-first order   |                    |       | Pseudo-second order   |              |       |
|-----------|--------------------|----------------------|--------------------|-------|-----------------------|--------------|-------|
|           |                    | $k_{l}(\min^{-1})$   | $q_e(\text{mg/g})$ | $R^2$ | $k_2(g/(mgmin))$      | $q_e (mg/g)$ | $R^2$ |
| MI-LPSPs  | 153.62             | 1.47×10 <sup>2</sup> | 144.09             | 0.996 | 0.35×10 <sup>-3</sup> | 149.53       | 0.998 |
| NI-LPSPs  | 50.43              | $0.51 \times 10^{2}$ | 246.31             | 0.988 | 0.38×10 <sup>-3</sup> | 52.82        | 0.979 |

Table S3 The Langmuir and Freundlich isotherm parameters obtained by the adsorption of BSA on MI-LPSPs and NI-LPSPs

| Adsorbent | q <sub>exp</sub><br>(mg/g) | Langmuir    |             | Freundlich |       |      |       |
|-----------|----------------------------|-------------|-------------|------------|-------|------|-------|
|           |                            | $q_m(mg/g)$ | $K_L(L/mg)$ | $R^2$      | $K_F$ | п    | $R^2$ |
| MI-LPSPs  | 165.82                     | 167.50      | 86.65       | 0.999      | 107.8 | 1.68 | 0.701 |
| NI-LPSPs  | 62.68                      | 63.09       | 11.24       | 0.998      | 290.3 | 2.17 | 0.857 |