Electronic Supplementary Information

Encapsulation of Au/Fe_3O_4 nanoparticles polymer into nanoarchitecture with combined near infrared-triggering chemophotothermal therapy based on intracellular secondary protein understanding

Ching-Wen Chen,^{*a*, \perp} Wei-Jhe Syu,^{*a*, \perp} Tzu-Chi Huang,^{*b*} Yao-Chang Lee,^{*c*} Hsiao,^{*d*} Kuo-Yi Huang,^{*e*} Hsiu-Ping Yu,^{*a*} Mei-Yi Liao,^{*b**} and Ping-Shan Lai ^{*a**} Jong-Kai

^a Department of Chemistry, National Chung Hsing University Taichung 402, Taiwan.

^b Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan.

^c National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan.

^d Department of Medical Imaging Buddhist Tzu Chi General Hospital, Taipei Branch New Taipei City 231, Taiwan.

^e Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University Taichung 402, Taiwan. ¹Dr. Ching-Wen Chen and Dr. Wei-Jhe Syu contributed equally to this work.

* E-mail: pslai@email.nchu.edu.tw

Fig. S1. A) TEM image, B) XRD pattern, C) HR-TEM image, and D) ED pattern of polyhedral Fe_3O_4 nanoparticles prepared using $FeCl_2$ + citrate + benzoic acid via a hydrothermal reaction at 200 °C for 12 h.

Intriguingly, we found that this polymer self-assembly reaction was very sensitive to the acid additive according to the corresponding photoabsorption of the Au@polymer NPs was increased in the NIR wavelength region after the addition of 18 μ L of HCl (2 N), ascribing to the generation of numerous Au nanoparticle aggregates within PSMA polymer spheres (Fig. S2B). The particles grew to bigger spherical shapes (~320 nm) with the optical

absorption band in the NIR wavelength region increased (Fig. S2C) compared to a single peak at ~ 545 nm of the single-domain Au@polymer NPs (~74 nm).

Fig. S2. TEM images of Au@polymer nanoparticles from the reaction of A) 1 mL of HAuCl₄ (5 mM) with 10 mL of PSMA (6 mg/mL) and B) 1 mL of HAuCl₄ (5 mM) with 10 mL of PSMA (6 mg/mL) with 18 μ L of HCl (2 M) after 13 h of hydrothermal reaction. C) UV-visible spectra of the Au@polymer from A) and B), labeled as a' and b'.

Fig. S3. TEM images of Au/Fe₃O₄@polymer NPs for A) 6 μ L and B) 10 μ L hydrothermal reactions including 200 ppm of carboxylate-coated Fe₃O₄ NPs. To understand the formation of the Fe₃O₄-involving Au/Fe₃O₄@polymer NPs, we used a magnet to collect the samples.

Fig. S4. TEM images of the Au/Fe₃O₄@polymer NPs for A) 22 μ L, B) 30 μ L, and C) 35 μ L hydrothermal reactions with 200 ppm of carboxylate-coated Fe₃O₄ NPs. The particle size of as-prepared Au/Fe₃O₄@polymer NPs increased with an increment of the HCl concentrations.

To understand the composite formation mechanism, time-dependent TEM images (Fig. S5) were collected to investigate the assembly process of the PSMA polymer, Au species, and Fe₃O₄ NPs during the formation of the Au-Fe₃O₄@PSMA nanocomposites. At a reaction time of 1 h, the colloidal Fe₃O₄ particles were clustered. The particle surfaces were

observed to be covered with a thin polymer layer (i.e., PSMA). Hydrogen bonding interactions between the carboxylic acids of the PSMA polymer and the carboxylic groups on the surfaces of the Fe₃O₄ NPs were suggested because protonation of the COO⁻ groups occurred under acidic conditions. Meanwhile, some Au nanocrystals were formed on the outermost surface of the Fe₃O₄ NPs. When the reaction time was extended to 2 h, polyhedral Au NPs (triangles, pentagons, and hexagons) were obtained. Notably, each Au NP also had a thin polymer coating. Numerous free polymer NPs were produced as well. The addition of Fe₃O₄ NPs did not interfere with the reduction of HAuCl₄ by the oxidation of PSMA. As the reaction continued, we observed that free polymer NPs, small Au@polymer nanocomposites, and clustered Fe₃O₄ NPs began to fuse together at 6 h. The spherical Au NPs grew into large ones between 6 and 13 h of reaction time. In the acid system, several unstable Au nanocrystals were potentially dissolved into Au species and then grown on the bigger ones again, favoring thermodynamic stability.

Fig. S5. Time-dependent A) TEM images and B) UV-visible spectra for monitoring the formation of Au/carboxylate-coated Fe₃O₄@polymer NPs in a mixture of18 μ L of HCl and 200 μ L of Fe₃O₄ NPs. To understand the formation process and not miss any information, we did not use a magnet to collect of the Fe₃O₄-containing Au/carboxylate-coated Fe₃O₄@polymer nanoparticles. After centrifugation at 500 rpm for 2 min, the samples were directly subjected to TEM for observation.

Fig. S6 A) Temperature dependence of NIR-irradiated Au/Fe₃O₄@polymer NPs (500 ppm_[Au]) solution as a function of irradiation time at a power density of 1.5 W/cm⁻² and 1.0 Wcm⁻². B), C) and D) Antitumor effect of contorl+laser, Au/Fe₃O₄@polymer NPs, and Au/Fe₃O₄@polymer NPs+laser in HT29 tumor-bearing athymic nude mice. * significantly different compared with the control group (ANOVA, * $p \le 0.05$).

Fig. S7. Temperature dependence of the 0.1 mL Fe₃O₄ nanoparticles (150 ppm), Au multicore@PSMA (62.5 ppm), and a mixture solution including Fe₃O₄ nanoparticles (150 ppm) and Au multicore@PSMA (62.5 ppm) as a function of irradiation time at 808 nm (1.5 W/cm²). This result verified the improvement of the photothermal effect with the addition of Fe₃O₄ nanoparticles into the Au multicore@PSMA solution.

The loading amount was determined to be ~190 mg/g based on UV-visible absorption measurements (Fig. S9). The FTIR spectrum of DOX binding onto the surfaces of the Au/Fe₃O₄@polymer NPs was acquired by employing ultra-high spatial resolution SR-IMS (Fig. S10). The result of Zeta-potential measurements revealed that the presence of a high density carboxylic acid groups binding onto the nanocomposite surface ascribed to negative charge of -35.2 mV of the Au/ Fe₃O₄@polymer NPs. Specially, the surface structure of PSMA also consisted of a polystyrene portion with C=C bonds. Strong mid-infrared absorption of DOX molecules binding onto the Au/Fe₃O₄@polymer NPs was attributed to a cooperative effect of electrostatic force and π - π interactions between the organic sheath of the nanocarrier and the DOX molecules. Consequently, the surface of the Au/Fe₃O4@polymer NPs has an advantage for multiplex interactions with positively charged and π -characterized FITC molecule the loading efficiency was approximately 3 times lower.

Fig. S8. UV-visible spectra recorded for free DOX (76.5 μ M) and the remaining free DOX in the supernatant after the absorption of DOX (76.5 μ M) onto the Au/Fe₃O₄@polymer NPs.

Synchrotron-based infrared microspectroscopy (SR-IMS) can achieve ultra-high spatial resolution approaching the diffraction limit and can be used in a number of biologically

relevant measurement techniques. The FTIR spectra of Au/Fe₃O₄@polymer-DOX NPs and pure DOX were acquired using SR-IMS. The spectrum of pure DOX has been previously reported.^{1,2} The detailed characteristic absorptions and vibration motion assignments for the FTIR spectra of DOX and the Au/Fe₃O₄@polymer-DOX NPs are shown in Fig. S10. In this study, the FTIR spectrum of pure DOX showed that absorption bands were observed at 3467 cm⁻¹, 3367 cm⁻¹, 1615 cm⁻¹, and 1580 cm⁻¹, assigned to vs O-H stretching vibration, a doublet of vs N-H stretching, and \Box bending vibrations, respectively. The characteristic absorption bands of the alkyl group of DOX were observed at 2977 $cm^{-1}(v_{as} a symmetric$ stretching vibration of CH₃), 2938 cm⁻¹ (v_{as} asymmetric stretching of CH₂), and 2845 cm⁻¹ (v_s symmetric stretching of CH₂). Other absorption bands were also observed at 1722 cm⁻¹, 1409 cm⁻¹, and 1283 cm⁻¹, assigned to v_s C=O stretching vibrations, δ O-H...O deformation of the phenyl skeleton and v C-O-H bending vibrations, respectively. For the Au/ Fe₃O₄@polymer-DOX nanocarriers, the absorption bands at 3061 cm⁻¹, 1713 cm⁻¹, 1600 cm⁻¹ and 1578 cm⁻¹ were attributed to v C=CH stretching vibrations, v_s C=O stretching vibrations and a doublet of δ NH₂ bending vibrations, respectively. The broad band observed at 3168 cm⁻¹ was assigned to hydrogen bonded v_s O-H stretching vibrations. The bands of the alkyl group were observed at 2920 cm⁻¹, 2852 cm⁻¹, 1493 cm⁻¹, 1450 cm⁻¹, and 1397 cm⁻¹ and were assigned to as CH₂ asymmetric stretching vibrations, v_s CH₂ symmetric stretching vibrations, aromatic C-C stretching vibrations, δ CH₂ bending vibrations and δ CH₃ bending vibrations, respectively. In this data, we also observed that, compared to pure DOX, the intensity of the N-H vibration signal of the Au/Fe₃O₄@polymer-DOX NPs was reduced because of DOX attachment to the Au/Fe₃O₄(a) polymer NPs via π - π stackingmediated adsorption. The increase in the vibration signal for C-H was attributed to the sp³ C-H bonds of PSMA. On the basis of these findings, the FTIR results revealed that the

attachment of DOX encapsulated within Au/Fe_3O_4 nanoparticles occurred via interactions of the -NH₂ and -OH groups of DOX.

Fig. S9. FTIR spectra of pure DOX and Au/Fe₃O₄@polymer-DOX NPs.

Fig. S10. A) T₂-weighted images and B) CT images of Au/Fe₃O₄@polymer NPs as a function of Fe and Au concentrations, respectively. C) CT imaging to monitor magnetic guided move to draw Au/Fe₃O₄@polymer NPs to bottom.

Fig. S11. T_2 relaxation (1/ T_1 , s⁻¹) rate of Au/carboxylate-coated Fe₃O₄@polymer NPs as a function of the iron concentration (mM).

References:

- 1. S. Kayal, R. V. Ramanujan, Mater. Sci. Eng. C., 2010, 30, 484-490
- C.J. Lee, J. S. Kang, M.S. Kim, K.P. Lee, M.S. Lee, Bull. Korean Chem. Soc., 2004, 25, 1211-1216.