Supporting Information

Topology Dictates Function: Controlled ROS Production and Mitochondria Accumulation via Curved Carbon Materials

Sihui Liu^[a], Di Lu^[a], Xinchang Wang^[b], Dan Ding^[c], Deling Kong^[c], Zheng Wang^[a], and Yanjun Zhao*^[a]

[a] School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
[b] State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
[c] State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China

* To whom correspondance should be addressed:

Email: zhaoyj@tju.edu.cn (ZHAO Y)

#	Feeding Ratio (γ-CD:Cor)	Integral Area Ratio (γ-CD:Cor)	Complexing Ratio (γ-CD:Cor)
1	1:1	1.61	2:1
2	2:1	1.57	2:1
3	4:1	1.56	2:1
4	6:1	1.63	2:1
5	8:1	1.67	2:1

Table S1. The determination of the complex ratio between γ -CD and Cor in the purified inclusion complex. The peak at 4.9 ppm (γ -CD) and 8.0 ppm (Cor) was selected for comparison. An integral area ratio at 1.6 (γ -CD:Cor) indicates the formation of a 2:1 γ -CD:Cor complex.

Figure S1. ¹H NMR spectrum of γ -CD/Per complex in DMSO-*d*₆. The ratio of integral area of the corresponding peak at positon i, j, h (Per) and position a (γ -CD) indicates the formation of a 2:1 (γ -CD:Per) inclusion complex.

Figure S2. The adsorption spectra of γ -CD/Cor complex (*top*), γ -CD/Per complex (*bottom*), and the corresponding controls (γ -CD, Cor and Per). The concentration of all samples was set at 4 μ M and the solvent was a mixture of ethanol and water (1:1, v/v).

Figure S3. The confocal laser scanning microscope images of PC-3 cells treated by either γ -CD/Cor or γ -CD/Per inclusion complex. The reactive oxygen species (ROS)-sensitive probe (DCFH-DA) was not present. The left column was the images of cells excited at 488 nm that was the wavelength for the excitation of DCFH-DA. The middle column was the brightfield images and the right column was the merged images of the first two columns. These indicated that γ -CD/Per exhibited inherent fluorescence when being excited at 488 nm, whereas γ -CD/Cor didn't display fluorescence under the same condition.

Figure S4. (A) The emission spectra of gama-cyclodextrin (γ -CD, 5 μ M in water), corannulene (Cor, 5

μM in acetonitrile), perylene (Per, 0.5 μM in acetonitrile), γ-CD/Cor (5 μM in water) and γ-CD/Per (0.5

µM in water) complexes. The excitation wavelength was 252 nm. (B) The emission spectra of corannulene

(Cor, 100 μ M) and perylene (Per, 100 μ M) in acetonitrile. Both were excited at 488 nm that was the wavelength for exciting the reactive oxygen species-specific probe (DCFH-DA). All the analysis was performed at 25°C.

Figure S5. The plot of slope in Figure 2B against the γ -CD/Cor complex concentration.

Figure S6. The fluorescence of reactive oxygen species (ROS)-sensitive probe (DCFH-DA) upon incubation with hydrogen peroxide (0.1-1.0 μ M) at 25°C for 30 min in H₂O. The excitation wavelength was 485 nm and the signal was collected at 530 nm.

Figure S7. The fluorescence of activated DCFH-DA probe (5 μ M) in PBS (25 mM, pH 7.2) upon the laser irradiation at 254 nm for up to 2 min (n = 3). The excitation and emission wavelength for detection was 485 nm and 530 nm, respectively.

Figure S8. Hematoxylin and eosin staining of major organs of mice that were treated by γ -CD/Cor complex (25 and 50 μ M). γ -CD and normal saline were employed as the control. All samples were intravenously injected and the analysis was performed 48 h post dose administration. Scale bar: 100 μ m.