Electronic Supplementary Information

Efficient Electrochemical Detection of Cancer Cells on *in-situ* Surface-Functionalized MoS₂Nanosheets

Yulin Guo^a, Yijin Shu^a, Aiqun Li^a, Baole Li^a, Jiang Pi^b, Jiye Cai^{a, c}, Huai-hong Cai^{a,*}, and Qingsheng Gao^{a,*}

^a Department of Chemistry, College of Chemistry and Materials Science, Jinan University No. 601 Huangpu Avenue West, Guangzhou 510632, China.

E-mail: tqsgao@jnu.edu.cn, thhcai@jnu.edu.cn

^bDepartment of Microbiology and Immunology, University of Illinois, Chicago 60612, USA.

[°] State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.

Fig. S1 TGA curve of bare thiourea (TU), showing an obvious weight loss from 175 to 245°C associated with TU decomposition.

Fig. S2 AFM image of TU-MoS₂.

Fig. S3 (a) SEM and (b) HR-TEM images of bare MoS_2 after removing TU by H_2SO_4 treatment. After the treatment with 0.05 M H_2SO_4 at 150 °C, the bare MoS_2 nanosheets are finally received. The SEM image of MoS_2 (Figure S3a) identifies the nanosheet-like morphology similar with TU-MoS₂. The HR-TEM (Figure S3b) shows the visible lattice fringe of 0.27 nm indexed as the (100) or (010) of hexagonal MoS_2 , and an interlayer spacing of 0.62 nm corresponding to $MoS_2(002)$.

Fig. S4 XPS profiles of N 1s in TU-MoS₂ and thiourea (TU).

Fig. S5 XPS profiles of Mo 3d and S 2p in TU-MoS₂ and bare MoS₂, showing the coincident peaks of Mo $3d_{3/2}$, Mo $3d_{5/2}$, S $2p_{1/2}$, and S $2p_{3/2}$ in the both tow samples. The similar chemical environment of Mo and S is reasonably indicated in TU-MoS₂ and MoS₂.

Fig. S6 Reproducibility of GE11/TU-MoS₂/GCEs biosensor for the repeated three tests with different HepG2 concentration.

Method	cytosensor material	Linear range [cells mL ⁻¹]	Detection limit [cells mL ⁻¹]	Ref.
Electrochemical impedance spectroscopy	TU-MoS ₂ nanosheets	50 - 2.0×10 ⁶	50	This work
Differential pulse volammetry	G-quadruplex/hemin /aptamer-AuNPs- HRP	$1.0 \times 10^2 - 1.0 \times 10^7$	30	[1]
ICP-MS	CdSe/ZnS QDs	$200-3 \times 10^4$	61	[2]
Electrochemiluminescence	TiO ₂ /CdS	$400 - 1.0 \times 10^4$	396	[3]
Electrochemiluminescence	ZnO@CdS nanorods	$3.0 \times 10^2 - 1.0 \times 10^4$	256	[4]
Atomic force microscope	Au microcantilever	1.0×10^3 - 1.0×10^5	300	[5]

Table S1 Comparison of different cytosensor material for HepG2 cell detection.

[1] D. Sun, J. Lu, Z. Chen, Y. Yu, M. Mo, *Analytica Chimica Acta* **2015**, *885*, 166.

- [2] B. Yang, B. Chen, M. He, B. Hu, Anal. Chem. **2017**, *89*, 1879.
- [3] L. Wang, S. Ma, X. Wang, D. Liu, S. Liu, X. Han, J. Mater. Chem. B 2013, 1, 5021.
- [4] D. Liu, L. Wang, S. Ma, Z. Jiang, B. Yang, X. Han, S. Liu, *Nanoscale* **2015**, *7*, 3627.
- [5] X. Chen, Y. Pan, H. Liu, X. Bai, N. Wang, B. Zhang, *Biosens.* Bioelectron. 2016, 79, 353.