Supporting Information

Tyramine functionalization of poly(glycerol sebacate) increases the elasticity of the polymer

Xiaochu Ding^a, Yen-Lin Wu^a, Jin Gao^a, Albin Wells^f, Keewon Lee^a and Yadong Wang^{*a,b,c,d,e}

^a Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15261, USA; ^b Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; ^c Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; ^d Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA; and ^e Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. ^f Allderdice High School, 2409 Shady Ave, Pittsburgh, PA 15217. *Corresponding author:

Email: <u>yaw20@pitt.edu</u> (Prof. Y. Wang)

1. Proton NMR analysis to identify the chemical compositions of PGS-SA and PGS-TA

The actual contents of succinate and tyramine in PGS-SA and PGS-TA prepolymers are quantified by proton NMR spectroscopy (**Fig. S1**). The integral area ratio of H_{i+j} to H_d is used to determine the actual succinate in PGS-SA (**Fig S1A**). Similarly, the actual contents of tyramine in PGS-TA₁₅ and PGS-TA₂₅ are calculated according to the integral area ratio of H_{n+o} to H_d (**Fig. S1B and C**). The detailed calculations are shown in equations (1), (2) and (3).

$$\frac{(2H_i + 2H_j)x}{4H_d(x+y)} = \frac{A_{H_i} + A_{H_j}}{A_{H_d}} = \frac{0.8353 + 0.7993}{12.7511}, x = 13\%$$
(1)
$$\frac{(2H_n + 2H_o)x}{4H_d(x+y)} = \frac{A_{H_n} + A_{H_o}}{A_{H_d}} = \frac{0.8921 + 0.8793}{10.4007}, x = 17\%$$
(2)
$$\frac{(2H_n + 2H_o)x}{4H_d(x+y)} = \frac{A_{H_n} + A_{H_o}}{A_{H_d}} = \frac{0.8561 + 0.8622}{6.5003}, x = 26\%$$
(3)

Where x + y = 1. The actual succinate content in PGS-SA is determined to be 13 mol%. Compared to the theoretical 25 mol%, approximately 52 % of succinic anhydride was reacted with PGS to yield the intermediate PGS-SA. However, the actual tyramine contents in PGS-TA₁₅ and PGS-TA₂₅ are 17 and 26 mol% respectively, which are close to the theoretical values of 15 and 25 mol%. This result indicates that the coupling reaction of tyramine with PGS-SA was occurred nearly in a quantitative fashion. The integration measurements likely introduced some errors, leading to the actual contents slightly higher than the theoretical values.

Fig. S1 (A) Integral area ratio of H_{i+j} to H_d is used to determine the actual composition of succinate in PGS-SA. Integral area ratio of H_{n+o} to H_d is used to determine the actual composition of tyramine in (B) PGS-TA₂₅ and (C) PGS-TA₁₅.

Fig. S2 Proton NMR spectrum of tyramine. The integral area ratio of H_a:H_b:H_c:H_d is approximately 1:1:1:1, matching well with the chemical structure of tyramine.

2. GPC analysis

Fig. S3 Comparison of the molecular weight distribution by gel permeation chromatography (GPC) using PEG as standards. (a) PGS-SA, (b) PGS-TA₁₅ and (c) PGS-TA₂₅. Molecular weight (Mn) of the PEG standards from right to left (arrow direction) are 1840, 2800, 10600, 22100, 106000 Da. After PGS-SA is coupled with tyramine, both PGS-TA₁₅ and PGS-TA₂₅ show high molecular weight bands above 106000 Da and low molecular weight bands between 1840 to 22100 Da referring to the PEG standards. It appears that tyramine molecules not only reacted with the immobilized succinate in PGS-SA, but some polyesters were also broken down into short chains, likely due to aminolysis of the ester bonds with tyramine.

3. Mechanical properties test

Fig. S4 (A, B) The representative original stress-strain curves from the cyclic loading tests of the PGS control and PGS-TA₂₅ elastomers. Both elastomers were made by curing at 150 °C for 24 h. (C, D) Cyclic loading tests of the PGS control and PGS-TA₂₅ elastomers that were cured at 150 °C for 8 h. Reduction of curing time increased the cyclic loading number from 1 to 595 cycles for the PGS control and 16 to more than 1000 cycles for PGS-TA₂₅ elastomers (We stopped the cyclic loading test at 1000 cycles without breaking the sample.). The tyramine functionalities significantly enhanced the capability to tolerate elastic deformations compared to PGS alone.

Please note that here we demonstrated one representative of the original stress-strain curve for each sample. We replicated at least three times for the cyclic loading tests for each PGS control, PGS-TA₁₅ and PGS-TA₂₅ elastomer, respectively. The average cyclic numbers are obtained to present in the main text in **Fig. 4A**. Because our mechanical test instrumentation (MTS InsightTM instrument, MTS Systems Corp., MN, USA) is not suitable for testing this type of soft elastomer, so the original curves are fluctuating (**Fig. S4A, B**). Therefore, we processed the original data by averaging 21 data points to obtain the relatively smooth curves for use.

Fig. S5 Examples of the original stress-strain curves from tensile tests of PGS control, PGS-TA₁₅ and PGS-TA₂₅ elastomers. Each sample was replicated more than 4 times for tensile tests and one representative stress-strain curve for each sample is shown here.

The original data points are fluctuating using our MTS instrument, so each stress-strain curve was processed by averaging 13 data points to obtain a relatively smooth curve to work out strain at fracture, ultimate tensile strength (UTS) and Young's modulus (E). We could not merge all replicates of the stress-strain curves in one figure using microsoft excel, so we list the strain at fracture, UTS and E from each stress-strain curve in **Table S1** for reference.

PGS				PGS-TA ₂₅		
Cure Condition	Strain, %	UTS, kPa	E, kPa	Strain, %	UTS, kPa	E, kPa
150 °C 24 h	50 48 83 36 48	556 457 639 414 490	932 805 668 929 866	43 67 41 52 40	328 369 402 814 723	635 597 1003 1464 1633
Mean \pm SD	53 ±18	$\textbf{511} \pm \textbf{88}$	840 ± 109	49 ± 11	527 ± 224	1066 ± 472
150 °C 16 h	80 69 55 71	321 313 261 381	347 386 393 444	87 81 89 84	515 485 481 460	510 522 471 539
Mean \pm SD	69 ± 10	319 ± 49	392 ± 40	85 ± 3.5	485 ± 23	510 ± 29
	217	355	148	129	387	270
150 °C 8 h	305 192 173 153	493 332 403 388	158 157 216 236	161 144 204 170	453 446 322 435	257 280 220 232
Mean \pm SD	208 ± 59	394 ± 62	183 ± 40	162 ± 28	409 ± 55	252 ± 25
PGS-TA ₁₅						
150 °C 24 h	54 63 46 46 45	652 602 529 578 496	1112 903 1076 1170 1026			
Mean ± SD	51 ± 7.7	571 ± 61	1057 ± 101			

Table S1 Strain at fracture, ultimate tensile strength (UTS) and Young's modulus (E) of the PGS control, PGS-TA₁₅ and PGS-TA₂₅ from each tensile test.

Fig. S6 Stress-strain curves of the compressive tests of the PGS control and PGS-TA₂₅ porous scaffolds. (A) Before incubation and (B) incubation in PBS ($1\times$, pH 7.4) at 37 °C for 75 h. The test for each sample was replicated three times (n=3) to obtain an average compressive modulus with standard deviation. The compressive modulus was determined according to the slope of the stress-strain curve between 5 - 20% strain.

4. FT-IR spectroscopy to examine the change of hydroxyl groups before and after a thermal crosslinking of PGS, PGS-TA₁₅ and PGS-TA₂₅

Fig. S7 Comparison of FT-IR spectra before and after a thermal crosslinking. (A) PGS control, (B) PGS-TA₁₅ and (C) PGS-TA₂₅. (a) Before and (b) after the thermal crosslinking was performed at 150 °C for 24 h under reduced pressure. The absorption bands at 3467 and 3367 cm⁻¹ are attributed to secondary hydroxyl groups in PGS control and phenolic hydroxyl groups in PGS-TA polymers. The results show that the absorption intensity of the hydroxyl groups is nearly identical before and after the thermal crosslinking, indicating that most hydroxyl groups remain intact after the thermal crosslinking. These free secondary hydroxyl groups and phenolic hydroxyl groups form physical interactions and contribute to the elasticity of the crosslinked PGS and PGS-TA elastomers.