Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Structure and Dynamics of DL- Homocysteine Functionalized Fullerene-C₆₀ - Gold Nanocomposite: a Femtomolar L-Histidine Sensor

Sanjeeb Sutradhar, Geevarghese Vadakken Jacob and Archita Patnaik*

Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India

*Corresponding author: e-mail ID: archita59@yahoo.com

Contents:	Page No
HOMO-LUMO energy gap of the investigated compounds	S1
IR spectral characteristics	S1
Optical spectra and FESEM micrograph of the nanocomposite	S2
EDX analysis and elemental mapping of the nanocomposite	S2
Cyclic voltammetry and corresponds potential plot with respect to scan rate of bar	e
and modified GCE	S3
Calculation of effective area of working electrode	S4
Reproducibility of AuNPs@C ₆₀ /GCE sensor	S5
Specificity of AuNPs@C ₆₀ /GCE sensor	S5
Stability of AuNPs@C ₆₀ /GCE sensor	S6
MD simulated geometries for higher simulation time scales	S6
Reference	S 7

Compound	Energy (eV)	HOMO-LUMO gap (eV)
Hcys	-1.89 x 10 ⁴	6.33
C_{60}	-6.22 x 10 ⁴	2.76
$(\text{Hcys})_2 - C_{60}$	-1.00 x 10 ⁵	2.45
$Au_3(Hcys)-C_{60}-(Hcys)Au_3$	-1.01 x 10 ⁵	1.65

Table S1. HOMO-LUMO energy gap of the investigated compounds

IR spectral characteristics

Fig. S1 FTIR spectra of Hcys, C₆₀, Hcys-C₆₀, Au@Hcys-C₆₀ nanocomposite.

	c ·	0.1	1 1	• .1		•	• ,	•
Table S7 (baracteristic IR	traduanciad	of the com	nounde uead	in tha	nracant	Invorti	inat	101
TADIE 52. Characteristic IN	neutroneites		nounus uscu		DICSCHL	IIIVUSU	וצמו	лон.

Compound	N-H (cm⁻ ¹)	S-H (cm ⁻¹)	C=O (cm ⁻¹)	C-N (cm ⁻¹)	C-S (cm ⁻¹)	Characteristic frequency (cm ⁻¹)
Hcys	2144	2595	1650	1473	1222	-
C ₆₀	-	-	-	-	-	1425, 1178, 569, 524
Hcys-C ₆₀	2148	2646	1669	1479	1238	1444, 1184, 594, -
Au@Hcys- C ₆₀	2190	Disappeared	1694	1478	1174	1447, 1110, 584, -

Optical spectra and FESEM micrograph of the nanocomposite:

Fig. S2 (a) UV-visible of C_{60} , Hcys- C_{60} , Au@Hcys- C_{60} nanocomposite. (b) FE-SEM image of the AuNPs@ C_{60} nanocomposite.

EDX analysis and elemental mapping of the nanocomposite

Fig. S3 (a) EDX analysis and (b) FESEM-EDX elemental mapping of the Au@Hcys- C_{60} nanocomposite on conductive carbon tape for different elements: C, N, S, Au.

Cyclic voltammetry and the corresponding potential plots as a function of scan rate of the modified and bare GCE

Fig. S4 (a) CVs of nanocomposite modified GCE with different scan rates in 0.1 M KCl containing 5 mM K_3 [Fe(CN)₆/K₄[Fe(CN)₆] (1:1) redox couple (*vs.* Ag/AgCl); (b) Peak potential *vs.* log scan rate (v)

Fig. S5 (a) CVs of bare GCE with different scan rates in 0.1 M KCl containing 5 mM $K_3[Fe(CN)_6/K_4[Fe(CN)_6]$ (1:1) redox couple (*vs.* Ag/AgCl); (b) Peak potential *vs.* log scan rate (v)

Calculation of effective working area of AuNPs@C₆₀/GCE electrode

Effective working area of this working electrode for the reversible process was calculated using Randles-Sevcik equation.¹

$$I_{pa} = (2.69 \times 10^5) n^{\frac{2}{3}} A D^{\frac{1}{2}} v^{\frac{1}{2}} C$$

Here,

 I_{pa} = Peak current in A

n = Number of electrons transferred

A = Effective working area of the modified electrode in cm²

- $D = \text{Diffusion coefficient of redox probe } K_3[Fe(CN)_6] = 7.6 \times 10^{-6} \text{ cm}^2\text{s}^{-1}$
- C =Concentration of redox probe = 5 mM = 5 x 10⁻⁶ molcm⁻³

v =Scan rate in Vs⁻¹

Fig. S6 A plot of anodic peak current as a function of scans rate for estimation of electrochemical area of the electrode.

The slope of the straight line for I_{pa} vs $v^{l/2}$ plot amounted to 4.3 x 10⁻⁴ AV^{-1/2}s^{1/2}. Accordingly, the estimated area was found to be 0.037 cm².

Reproducibility of the AuNPs@C₆₀/GCE sensor

Fig. S7 A plot of sensitivity response of four same electrodes of Au@Hcys-C₆₀/GCE in a 0.1 M PBS (pH 7.5) containing 0.1 M KCl (*vs.* Ag/AgCl) with L-histidine concentration varying as 0.01 pM - 0.1 mM.

Specificity of Au@Hcys-C₆₀/GCE sensor

Interference species (0.1 µM vs. 1 µM)

Fig. S8 Relative response of the fabricated Au@Hcys-C₆₀/GCE sensor by SWV to different amino acids in 0.1 M PBS buffer (pH 7.5) containing 0.1 M KCl (*vs.* Ag/AgCl).

Stability of Au@Hcys-C₆₀/GCE sensor

Here, I₀ is the initial current response and I is the current response of the investigation day.

Fig. S9 Stability performance of the Au@Hcys-C₆₀/GCE sensor over a period of 30 days with a interval of 5 days to 1 mM L-histidine in a 0.1 M PBS (pH 7.5) containing 0.1 M KCl (*vs.* Ag/AgCl).

MD simulated geometries for higher simulation time scales

E=10476.4 kcal/mol

Fig. S10 Snapshots of the MD simulated geometries for higher simulation time scales depicting the 2 components diverging from each other.

Reference:

1. J.-S. Ye, Y. Wen, W. De Zhang, H. F. Cui, G. Q. Xu and F.-S. Sheu, *Electroanalysis*, 2005, 17, 89-96.