Supporting Information

Ultrahigh-yield Synthesis of N-doped Carbon Nanodots with Down-regulating ROS in Zebrafish

Lei Wang, Baoqiang Li*, Li Li, Feng Xu, Zheheng Xu, Daqing Wei, Yujie Feng, Yaming Wang, Dechang Jia, Yu Zhou

*E-mail: libq@hit.edu.cn

Supplementary Figures

Figure S1. The effect of unsaturated amides, carboxylic acids or ester mass ratios (CS+AAM 5, CS/AAM 10, CS/AAM 15, CS/AAM 20) on (A) Nitrogen content (mol %); (B) Maximum emission; (C) Quantum yield of N-doped CNDs.

Figure S2. Excitation-dependent photoluminescence spectra of other N-doped CNDs (A: CS/AAM 5; B: CS/AAM 10; C: CS/AAM 15).

Figure S3. Typical time-resolved fluorescence-decay curve of other N-doped CNDs (A: CS/AAM 5; B: CS/AAM 10; C: CS/AAM 15; D: CS/AAM 20).

Figure S4. AFM topography image of N-doped CNDs on a silicon substrate

Figure S6. XPS high resolution scans of the $C_{1s}(A)$ and $O_{1s}(B)$.

Figure S7 (A) ¹H-NMR and (B) ¹³C-NMR spectra of the N-doped CNDs

Figure S8 Fluorescence images of HCT116 cells treated with N-doped CNDs under fluorescence field (365~405 nm, 550~570 nm) and bright field.

