Luminescent CaTiO₃:Yb,Er Nanofibers Co-conjugated with Rose

Bengal and Gold Nanorods for Potential Synergistic

Photodynamic/Photothermal Therapy

Yike Fu^{a†}, Heng Liu^{a†}, Zhaohui Ren^a, Xiang Li^{a*}, Jie Huang^b, Serena Best^c, Gaorong Han^{a*}

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.

^b Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.

^c Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 OFS, UK.

* E-mail: xiang.li@zju.edu.cn; hgr@zju.edu.cn

† Authors contributed equally to this work.

The UV-vis absorption spectra of RB-HA molecules with different concentrations

were examined (Figure S1a). A linear fit was calculated between the concentration of

RB-HA molecules and the absorption intensity (Figure S1b). The correlation equation

is Abs=96.0355*concentration (mg/mL) + 0.0010 (correlation coefficient R² = 0.99).

Therefore, the concentration of RB-HA molecules loaded on CTO fibers could be

obtained via substituting the difference between the absorption intensity at ~566 nm

of pure CTO (0.08 mg/mL) and CTO-RB (0.08 mg/mL) into the correlation equation

(Figure S1c). The number of RB-HA molecules attached is therefore determined to be

1.77*10¹⁶ molecules per milligram CTO nanofibers.

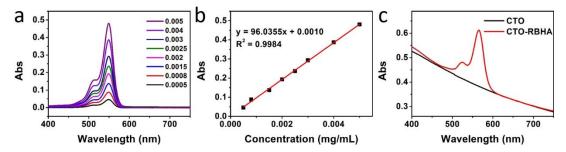


Figure S1 (a) UV-vis absorption spectra of RB-HA with different concentrations; (b) Linear correlation between the absorption intensity at 549 nm and the concentration of RB-HA; (c) UV-vis absorption spectra of CTO nanofibers and CTO-RBHA nanocomposite.