Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Graphene based Multiplexed disposable Electrochemical biosensor for on-

farm rapid monitoring of NEFA and βHBA Dairy biomarker

Satish K. Tuteja¹, Todd Duffield², Suresh Neethirajan^{1*}

¹BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, N1G 2W1,

Canada

²Todd Duffield, Population Medicine, Ontario Veterinary College, University of Guelph,

Guelph, ON, N1G 2W1, Canada

*Corresponding author:

E-mail address: <u>sneethir@uoguelph.ca</u> (S. Neethirajan).

Table S1: Analysis of standard and spiked blood, (containing known NEFA concentrations) and clinical serum samples (containing unknown NEFA concentrations) using DPV (Differential Pulse Voltammetry) technique.

NEFA	Current	Current (µA)	Conc.	%	Real	Current	Estimated
Conc.	(µA) in	in Spiked	Calculated	Recovery	Clinical	(µA)	Conc.
(mM)	Standard	Blood	(mM)		Samples	Measured	(mM)
	(n=3)	Samples			_	(n=3)	
		(n=3)					
0.1	70.14	69.89	0.112	112	Unknown	59.55	0.151
					Sample- 1		
0.25	61.43	58.24	0.299	119.6	Unknown	55.45	0.616
					Sample- 2		
0.5	57.18	55.47	0.614	122.8	Unknown	51.53	1.060
					Sample- 3		
1	51.57	50.69	1.156	115.6	Unknown	50.21	1.21
					Sample- 4		
1.25	48.03	46.21	1.664	133.12			
1.5	46.83	43.14	2.012	134.13			
2	41.66	38.48	2.540	127			
3	34.33	32.14	3.259	108.63			
-							
4	25.95	25.39	4.024	100.5			
5	17.8	18.14	4.846	96.92			
7.5	16.62				1		
10	7.39	1					

Table S2: Analysis of standard and spiked blood, (containing known βHBA concentrations) and
clinical serum samples (containing unknown βHBA concentrations) using DPV (Differential Pulse
Voltammetry) technique.

βHBA Conc.	Current (µA) in	Current (µA) in	Conc. Calculated	% Recovery	Real Clinical	Current (µA)	Estimated Conc.
(mM)	(n=3)	Blood Samples (n=3)	(mM)		Samples	Measured (n=3)	(mNI)
0.7	74.52	75.16	0.609	87	Unknown Sample- 1	72.14	0.7179
0.8	70.55	70.53	0.775	96.87	Unknown Sample- 2	68.54	0.846
1	62.46	65.14	0.968	96.8	Unknown Sample- 3	61.27	1.107
1.2	57.14	57.41	1.245	103.75	Unknown Sample- 4	46.89	1.6223
1.4	52.32	50.58	1.490	106.42			
1.6	47.62	45.86	1.659	103.12			
1.8	42.72	41.49	1.81	100.55			
2	36.96	39.11	1.900	95			
3	33.71	36.21					
4	28.83	30.41					
5	23.18	22.54					
7.5	19.91	18.95	1				
10	7.22	8.24					

NEFA Conc. in Standard (mM)	Current Measured	Conc. in Spiked	Current Measured	Calculated conc. of antigen using standard	% Recovery
	(μΑ)	Blood	(μΑ)	calibration	
	(n=3)	(mM)	(n=3)	(mM)	
Ab	127.94	Ab	128.40		
0.1	121.63	0.1	120.24	0.108	108
0.2	115.35	0.2	116.18	0.204	102
0.4	106.52	0.4	108.47	0.386	96.5
0.6	99.94	0.6	101.14	0.559	93.16
0.8	93.31	0.8	95.53	0.691	86.37
1	83.61	1	90.21	0.817	81.7
1.2	70.58	1.2	75.14	1.173	97.75
1.4	63.71	1.4	62.34	1.475	105.35
1.6	60.89	1.6	60.21	1.525	95.31
1.8	46.29	1.8	47.54	1.824	101.33
2	41.09	2	39.59	2.012	100.6
3	36.42	3	37.12		
4	30.91	4	30.25		
5	25.69	5	26.57]	
10	17	10	16.59		

Table S3: Analysis of standard and spiked blood samples with known concentration of NEFA using chronoamperometry

Table S4: Analysis of standard and spiked blood samples with known concentration of β HBA using chronoamperometry.

βHBA Conc. in Standard (mM)	Current Measured (µA) (n=3)	Conc. in Spiked Blood (mM)	Current Measured (µA) (n=3)	Calculated conc. of antigen using standard calibration (mM)	% Recovery
Ab	102.64	Ab	102.75	, , , , , , , , , , , , , , , , , , ,	
0.7	92.95	0.7	94.35	0.591	84.42
0.8	87.20	0.8	90.54	0.686	85.75
0.9	80.92	0.9	82.47	0.887	98.56
1	75.52	1	75.96	1.049	104.9
1.2	68.65	1.2	65.47	1.310	109.16
1.4	61.64	1.4	60.11	1.443	103.07
1.6	51.83	1.6	48.72	1.722	107.62
1.8	46.42	1.8	46.21	1.789	99.38
2	39.80	2	42.18	1.88	94
3	32.28	3	30.11		
4	26.44	4	24.55		
5	17.82	5	19.47		
10	13.42	10	12.76		

Table S5: Analysis of standard and spiked blood samples with known concentrations of NEFA using color based absorbance (at 450 nm) with a commercial colorimetric kit. The clinical samples of unknown concentrations were also measured, and the concentrations were estimated by using the linear plot equation shown in Figure 7(c).

NEFA	Absorbance	NEFA	Absorbance	Calculated	%	Real	Absorbance	Conc.
Conc. in	Measured	Conc.	Measured	Conc. of	Recovery	Serum	Measured	Calculation
Standard	(O. D.)	in	(O. D.)	NEFA		Sample	(n=3)	(mM)
(mM)	(n=3)	Spiked	(n=3)	using				
		Blood		standard				
		(mM)		calibration				
				plot				
				(mM)				
0.1	0.115	0.1	0.115	0.152	100	Sample-	0.156	0.168
						1		
0.2	0.225	0.2	0.277	0.217	108.5	Sample-	1.222	0.597
						2		
0.3	0.467	0.3	0.402	0.267	89	Sample-	2.356	1.054
						3		
0.4	0.69	0.4	0.625	0.357	89.25	Sample-	2.356	1.218
0.5	0.956	0.5	0.997	0.507	101.4	4		
0.6	1.124	0.6	1.254	0.610	101.67			
0.7	1.456	0.7	1.541	0.726	103.71			
0.8	1.668	0.8	1.745	0.808	101			
0.9	1.958	0.9	1.897	0.869	96.56			
1	2.379	1	2.347	1.050	105			

Table S6: Analysis of standard and spiked blood samples with known concentrations of β HBA using color based absorbance (at 450 nm) with a commercial colorimetric kit. The clinical samples of unknown concentrations were also measured, and the concentrations were estimated by using the linear plot equation shown in Figure 7d.

βΗΒΑ	Absorbance	BHBA	Absorban	Calculated	%	Real	Absorbance	Conc.
Conc.	Measured	Conc. in	ce	Conc. of	Recovery	Serum	Measured	Calculation
in	(O. D.)	Spiked	Measured	BHBA		Sample	(n=3)	
Standar	(n=3)	Blood	(O. D.)	using		(Diluted		
d (mM)		(mM)	(n=3)	standard		10 times)		
				calibration				
				plot				
				(mM)				
0.025	0.128	0.025	0.132	0.0255	102	Sample-1	0.455	0.700
0.05	0.312	0.05	0.335	0.0531	106.2	Sample-2	0.527	0.802
0.1	0.667	0.1	0.684	0.105	105	Sample-3	0.669	1.005
0.2	0.975	0.2	0.974	0.199	99.5	Sample-4	0.882	1.690
0.3	1.378	0.3	1.45	0.321	107			
0.4	1.710	0.4	1.85	0.431	107.75			
0.5	2.152	0.5	2.41	0.576	115.2			
1	3.844	1	3.98	1.04	104			

Table S7: The comparison of results of NEFA obtained by using chemical analyzer, a colorimetric kit, and by our proposed electrochemical method.

Sr.	Clinical Serum Samples of	Detection by Chemical	Detection by	Our Proposed
No.	Unknown conc. of NEFA	Analyzer	Commercial	Electrochemical
			Colorimetric Kit	Method
1	Sample-1	0.165 mM	0.168 mM	0.151 mM
2	Sample-2	0.621 mM	0.597 mM	0.616 mM
3	Sample-3	1.058 mM	1.054 mM	1.060 mM
4	Sample-4	1.226 mM	1.218 mM	1.21 mM

Table S8: The comparison of results of β HBA obtained by using chemical analyzer, a colorimetric kit, and by our proposed electrochemical method.

Sr.	Clinical Serum Samples of	Detection by	Detection by	Our Proposed
No.	Unknown conc. of βHBA	Chemical	Commercial	Electrochemical Method
	·	Analyzer	Colorimetric Kit	
1	Sample-1	0.784 mM	0.700 mM	0.712 mM
2	Sample-2	0.824 mM	0.802 mM	0.846 mM
3	Sample-3	0.958 mM	1.005 mM	1.107 mM
4	Sample-4	1.721 mM	1.690 mM	1.622 mM

Figure S9: The incubation (interaction time) study of NEFA and β HBA over the Ab@E-rGO/SPE

Figure S10: EDX analysis of exfoliated GO and electrodeposited E-rGO on the surface of SPEs.

Figure S11: (a) 3D view of AFM analysis of E-rGO nanosheets; (b) Corresponding Line mapping.

Figure S12: The comparison between the antibodies immobilized over the E-rGO and C-rGO towards electrocatalytic activity for sensor performance.

Figure S13: Stability of Ab@ErGO/SPEs during storage and the corresponding variation in response was measured at different time intervals.