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1. Experimental Section

Table S1. Sequences of miRNAs and DNA probes used in this work

Name Sequence (5’-3’)

5-F FAM- CCA TC

9-F FAM- CCA TCT TTA

13-F FAM- CCA TCT TTA CCA G

17-F FAM- CCA TCT TTA CCA GAC AG

22-F FAM- CCA TCT TTA CCA GAC AGT GTT A

22-C Cy3 - CCA TCT TTA CCA GAC AGT GTT A

P-141 FAM - CCA TCT TTA CCA GAC AGT GTT A -FAM

MB FAM-CCTCCACCCATCTTTACCAGACAGTGTTAGTGGAGG-BHQ1

miRNA-141 U AAC ACU GUC UGG UAA AGA UGG

miRNA-429 U AAU ACU GUC UGG UAA AAC CGU

miRNA-200b U AAU ACU GCC UGG UAA UGA UGA

SmiRNA-141 U AAC ACU GUC UAG UAA AGA UGG

miRNA-21 U AGC UUA UCA GAC UGA UGU UGA

P-21 TAMRA - TCA ACA TCA GTC TGA TAA GCT A - TAMRA

DNA-141 T AAC ACT GTC TGG TAA AGA TGG

SmiRNA-141 is a single-base mismatched RNA, and the mismatched position is marked in red. The underlined 

sequence of MB is designed to recognize miRNA-141 and form MB/miRNA duplex. DNA-141 is a ssDNA with 

same sequences as miRNA-141.
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2. Supplementary results 

Fig. S1 Quenching efficiency as a function of β-Ni(OH)2 nanosheets with ssDNA (inset is dsDNA) 

in the presence of varying concentrations of MgCl2. The concentrations for β-Ni(OH)2 nanosheets 

and DNA (ssDNA: 22-F; dsDNA: 22-F/DNA-141) were 480 μg/mL and 50 nM, respectively. The 

buffer used in this experiment is 25 mM Tris-HCl (pH=8.0) containing 100 mM KCl.

Fig. S2 Effect of pH on the quenching efficiency between β-Ni(OH)2 nanosheets and ssDNA.. 

Each sample was prepared in 25 mM buffer containing 100 mM KCl, 1 mM MgCl2, 84 μg/mL β-

Ni(OH)2 nanosheets and 600 nM 22-F ssDNA.
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Fig. S3 Effect of pH on the degradation of β-Ni(OH)2 nanosheets. Each sample contains 2.4 

mg/mL β-Ni(OH)2 nanosheets.

Fig. S4 (A) Photos of β-Ni(OH)2 nanosheets (1) treated by adding 20 mM EDTA (2), heating at 

95 °C (3) or both EDTA and heat (4). (B) Non-denatured PAGE analysis of the supernatant of 

different samples. Lane 1: 22-C; Lane 2: 22-C + DNA-141; Lane 3: 22-C + β-Ni(OH)2 nanosheets 

+EDTA; Lane 4: 22-C + β-Ni(OH)2 nanosheets + 95 °C heat treatment; Lane 5: 22-C + β-Ni(OH)2 

nanosheets +EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)2 nanosheets + EDTA + 95 

°C heat treatment + DNA-141. Each sample contained a final buffer concentration of 25 mM, 100 

mM KCl, 1 mM MgCl2, 0.96 mg/mL β-Ni(OH)2 nanosheets, 20 mM EDTA, and 2 µM DNA.
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Fig. S5 Effect of pH on the desorption efficiency of DNA on β-Ni(OH)2 nanosheets. Each sample 

(25 µL) contained a final buffer concentration of 25 mM, 100 mM KCl, 1 mM MgCl2, 0.96 

mg/mL β-Ni(OH)2 nanosheets, 20 mM EDTA, and 2 µM DNA.

Fig. S6 Fluorescence response of MB for different samples. MB was used as a signal probe to 

recognize DNA-141. The fluorescence signal is low when there is no DNA-141 in the sample 1. 

The fluorescence signal is dramatically increased as the addition of DNA-141 in the sample 2 

(1200 nM, 20 µL). We diluted sample 2 with buffer for 50-fold (sample 3: 24 nM, 20 µL), and 

then added β-Ni(OH)2 nanomaterial to adsorb and enrich DNA-141 (sample 3’: 24 nM, 1000 µL). 

After centrifugation and degradation, the adsorbed and enriched DNA-141 was desorbed and 

collected in sample 4 (20 µL). The sample 4 was also analyzed by MB. The signal induced by 

sample 4 with desorbed DNA-141 was approach with the sample before diluted sample 2. 
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Fig. S7 The performance of the assay was evaluated by the (F-F0 )/ F0 at different temperatures, 

where F0 and F are the fluorescence signals in the absence and the presence of miRNA-141, 

respectively. The concentrations of 22-F, miRNA and β-Ni(OH)2 nanosheets were 300 nM, 10 nM 

,10 nM and 6 μL (480 µg/mL), respectively. Error bars are standard deviation of three repetitive 

experiments.

Fig. S8 Melting curve of MB/miRNA-141 duplex. The Tm of MB/miRNA-141 is about 68 ℃ 

which is higher than the working temperature of DSN (60℃). The underlined sequence of MB(5’-

FAM-CCTCCACCCATCTTTACCAGACAGTGTTAGTGGAGG-BHQ1-3’) is designed to 

recognize miRNA-141 and form MB/miRNA-141 duplex. The experiment was performed on a 

Mx 3005P real-time PCR equipment (Stratagene, USA). 
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Fig. S9 Non-denatured PAGE analysis of P-141 and miRNAs in the absence (A) and presence (B) 

of DSN. Lane 1: P-141+ miRNA-141; Lane 2: P-141+ SmiRNA-141; Lane 3: P-141+ miRNA-

429; Lane 4: P-141+ miRNA-21. The concentrations of P-141, miRNA and DSN were 2000 nM, 

2000 nM and 0.4 U, respectively.

Table S2. Average Ct values in qRT-PCR assay of miRNA-141a.

Cell Sample miRNA-141 U6 ΔCt ΔΔCt 2(-ΔΔCt)

22Rv1 18.41899 8.033598 10.3854 0 1

293T 26.92119 7.931848 18.98934 8.603945 0.00257

MDA-MB231 18.07741 8.019919 10.05749 -0.32791 1.255191

HeLa 27.18598 7.833008 19.35297 8.967577 0.001998

 a Detection of miRNA-141 expression levels in total RNA isolated from four kinds of human cell lines using 

qRT-PCR method. For each sample, we added the same dosage of total RNAs. U6 was used as reference gene. The 

values of 2-(∆∆Ct) were relative with the expression levels. Relative expression levels were based on the expression 

ratio of miRNA-141 in target cell lines versus that in 22Rv1 cell lines. From the the values of 2-(∆∆Ct), the 

expression level of miRNA-141 in 22Rv1 and MDA-MB231 cell line were estimated to be more than 400-fold of 

that in 293T and HeLa cell line, indicating the up-regulation of miRNA-141 in 22Rv1 and MDA-MB231cell lines 

as compared with 293T and HeLa cell lines.


