Production of a Fluorescence Resonance Energy Transfer (FRET) Biosensor Membrane for MicroRNA Detection

Yike Fu^a, Tong Chen^a, Gang Wang^a, Tongxu Gu^a, Congkun Xie^a, Jie Huang^b, Xiang Li^{a*}, Serena Best^c, Gaorong Han^{a*}

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.

^b Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.

^c Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 OFS, UK.

* E-mail: <u>xiang.li@zju.edu.cn</u>; <u>hgr@zju.edu.cn</u>

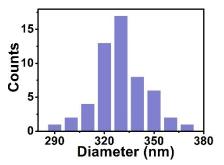


Figure S1 Diameter distribution of CaF₂:Yb,Ho nanoparticles processed hydrothermally at 180 °C for 24 h.

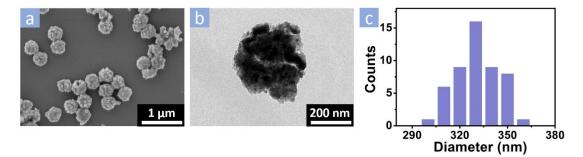


Figure S2 (a) SEM, (b) TEM and (c) diameter distribution of CaF_2 : Yb, Ho nanoparticles calcined at 700 °C for 4 h.

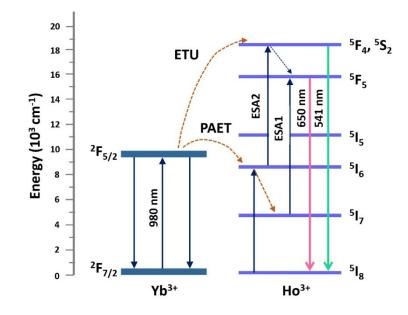


Figure S3 Simplified energy level scheme of Yb³⁺/Ho³⁺ ions with mechanisms of energy transfer under excitation of 980 nm NIR. After ground state absorption of Yb³⁺ ion, the Ho³⁺ at ⁵I₆ level ion is populated in result of phonon-assisted energy transfer (PAET). Short lifetime of this multiplet leads to rapid nonradiative relaxation to metastable ⁵I₇ level. Subsequently, the excited ions gathered on this level absorb energy from pump radiation and populated to ⁵F₅ level (⁵I₇-⁵F₅ transition) through excited state absorption (ESA1) process. In the next step, the ⁵F₄(⁵S₂) was populated in consequence of the energy transfer with upconversion (ETU) from the excited Yb³⁺ ion and with second excited state absorption (ESA2). Finally, the green and red emissions can be generated at the ⁵F₄/⁵S₂ state and ⁵F₅ state by radiative decays to the ground ⁵I₈ state with the wavelengths of 541 nm and 650 nm, respectively ^{1, 2}.

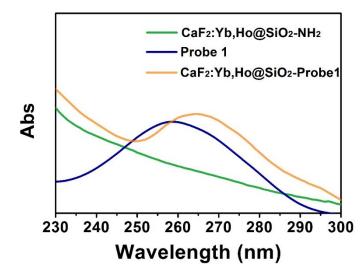


Figure S4 UV-vis absorption of CaF₂:Yb,Ho@SiO₂-NH₂, Probe 1 and CaF₂:Yb,Ho@SiO₂-Probe 1 conjugation.

References

- 1. C. Guanying, L. Haichun, S. Gabriel, L. Huijuan and Z. Zhiguo, *Nanotechnology*, 2009, **20**, 385704.
- 2. J. Zmojda, M. Kochanowicz, P. Miluski, J. Dorosz, J. Pisarska, W. A. Pisarski and D. Dorosz, *J. Lumin.*, 2016, **170**, 795-800.