Electronic Supplementary Information

Human Skin Interactive Self-powered Wearable Piezoelectric Bio-*e*-skin by Electrospun Poly-L-lactic Acid Nanofibers for Non-invasive Physiological Signal Monitoring

Ayesha Sultana[†], Sujoy Kumar Ghosh[†], Vitor Sencadas^{‡,#}, Tian Zheng[§], Michael Higgins[§], Tapas Ranjan Middya[†], Dipankar Mandal[†],*

[†]Organic Nano-Piezoelectric Device Laboratory, Department of Physics, Jadavpur University, Kolkata 700032, India

[‡]Australian Centre of Excellence for Electromaterials Science (ACES), University of Wollongong, NSW 2522, Australia

#School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

[§]ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Faculty, Innovation Campus, University of Wollongong, Squires Way, NSW, Australia

*Corresponding Author

Dr. Dipankar Mandal

E-mail: <u>dipankar@phys.jdvu.ac.in;dpkrmandal@gmail.com</u>

<u>Fax:</u> +91-33-2413-8917

<u>Tel.:</u>+91 33241466666×2880

Number	Wavenumber (cm ⁻¹)	Vibrational bands	
1	1756	ν(C=O)	
2	1453	$\delta_{as}(CH_3)$	
3	1383	$\delta_s(CH_3)$	
4	1360	δ(CH)	
5	1300	ν(C–H)	
6	1266	v(C–H)+ v(C–O–C)	
7	1209	$v_{as}(C-O-C)+r_{as}(CH_3)$	
8	1184	v _{as} (C–O–C)	
9	1129	r _s (CH ₃)	
10	1089	v _s (C–O–C)	
11	1047	$v_{s}(C-CH_{3})$	

Table S1. Vibrational bands assignment of PLLA nanofibers based on FT-IR spectra

Figure S1. Height profile of AFM topographical image.

	Table S2. Comparison	of PBio-e-skin w	vith the previously	reported sensors
--	----------------------	------------------	---------------------	------------------

Transduction	Active materials	Maximum	Lower Limit of	Pressure	Reference
mechanisms		sensitivity	detection	range	
Capacitance	PDMS/SWCNTs	2.3 x 10 ⁻⁴	~50 Pa	< 1 MPa	[1]
		kPa ⁻¹			
Capacitance	Ecoflex	1.62 kPa ⁻¹		500 kPa	[2]
Capacitance	PDMS/SWCNTs	1.5 kPa ⁻¹	2.5 Pa	< 1 kPa	[3]
Capacitance/OF	PDMS	0.55 kPa ⁻¹	3 Pa	0.2 kPa	[4]
ET					
Capacitance/OF	PDPP3T	192 kPa ⁻¹	< 0.3 Pa	5 kPa	[5]
ET					
OFET/Piezoresi	Ge/Si NWs	11.5 kPa ⁻¹		15 kPa	[6]
stivity					
Piezoresistivity	rGO foam	15.2 kPa ⁻¹	163 Pa	49 kPa	[7]
Piezoresistivity	РРу	133.1 kPa ⁻¹	0.8 Pa	20 kPa	[8]
Piezoresistivity	PDMS	1.8 kPa ⁻¹	0.6 Pa	1.2 kPa	[9]
Piezoresistivity	PDMS/PtNWs	1.5 kPa ⁻¹	3 Pa	1.5 kPa	[10]
Piezoresistivity	SBS elastomer	10.7 MHz	13.3 Pa	13 kPa	[11]
		kPa ⁻¹			

Piezoresistivity/	AgNWs/PDMS/	204.4 kPa ⁻¹	0.2 Pa	4.5 kPa	[12]
Triboelectricity	CNT-PDMS				
Triboelectricity	PDMS/Ag NWs	0.31 kPa ⁻¹	2.1 Pa	10 kPa	[13]
Triboelectricity	micropyramid	0.29 VkPa ⁻¹	0.4 kPa		[14]
	structures PDMS				
	film				
Piezoelectricity	ZnOnanorod	2.1 µS kPa ⁻¹	3.5 kPa	31.5 kPa	[15]
Piezoelectricity	P(VDF-TrFE)	1.1 V kPa ⁻¹	0.1 Pa	2 kPa	[16]
	nanofiber				
Piezoelectricity	P(VDF-TrFE)	0.75 mV kPa ⁻¹		40 kPa	[17]
Piezoelectricity	P(VDF-TrFE)	458.2mV/N	0.1 N		[18]
	nanowires				
Piezoelectricity	P(VDF-TrFE)	269.4 mV/N	4 N		[19]
	microfiber array				
Piezoelectricity	P(VDF TrFF)/BaTiOa	257.9 mV/N	5 N		[20]
	nanocomposite				
	micropiliars				
Piezoelectricity	P(VDF-TrFE)/		0.1 MPa		[21]
Diama ala atminita	BrTiO ₃ -FET	0.001 V/D-	20 D-		[22]
Plezoelectricity	P(VDF-	0.001 V/Pa	20 Pa		[22]
	TrFE)/BrTiO ₃				
	microstructured – FET				
Piezoelectricity	P(VDF-TrFE)/		2 MPa		[23]
	PbTiO ₃ -FET				
Piezoelectricity	PVDF	1 kPa			[24]
Ferroelectret	Cellular PP/a-	0.1 V kPa ⁻¹	2 Pa	1 MPa	[25]
TFT	Si:H				
Piezoelectret	PDMS/PTFE	10 V kPa ⁻¹		50 kPa	[26]
Piezoelectret	PTFE/porous	1.5 V kPa ⁻¹		15 kPa	[27]
	PTFE				
Piezoelectricity	PLLA	0.003 V/Pa	18 Pa	0.3 MPa	This work
	nanofibers	(22 V/N)			

References

- D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox and Z. Bao, *Nat. Nanotechnol.* 2011, 6, 788–792.
- [2] S. Yao and Y. Zhu, Nanoscale, 2014, 6, 2345-2352.
- [3] S. Park, H. Kim, M. Vosgueritchian, S. Cheon, H. Kim, J. H. Koo, T. R. Kim, S. Lee, G.
 Schwartz, H. Chang and Z. Bao, *Adv. Mater.*, 2014, 26, 7324–7332.
- [4] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir,
- A. N. Sokolov, C. Reese and Z. Bao, Nat. Mater., 2010,9, 859-864.
- [5] Y. Zang, F. Zhang, D. Huang, X. Gao, C.-A. Di, D. Zhu, Nat. Commun., 2015, 6, 6269.
- [6] K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, A. Javey, *Nat. Mater.*, 2010, **9**, 821–826.
- [7] C. Hou, H. Wang, Q. Zhang, Y. Li and M. Zhu, Adv. Mater., 2014, 26, 5018–5024.
- [8] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt and Z. Bao, *Nat. Commun.*, 2014, 5, 3002.
- [9] X. Wang, Y. Gu, Z. Xiong, Z. Cui and T. Zhang, Adv. Mater., 2014, 26, 1336–1342.
- [10] C. Pang, G.-Y. Lee, T.-I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn and K.-Y. Suh, Nat. Mater., 2012, 11, 795–801.
- [11] L.Y. Chen, B. C.-K. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H.-S. P.Wong, M. V. McConnell and Z. Bao, *Nat. Commun.*, 2014, 5, 5028.
- [12] J. Luo, F. R. Fan, T. Zhou, W. Tang, F. Xue, Z. L. Wang, *Extrem. Mech. Lett.*, 2015, 2, 28–36.
- [13] L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen and Z. L. Wang, ACS Nano, 2013, 7, 8266–8274.
- [14] Y. Yang, H. L. Zhang, Z. H. Lin, Y. S. Zhou, Q. S. Jing, Y. J. Su, J. Yang, J. Chen, C.G. Hu and Z.L. Wang, *ACS Nano*, 2013, 7, 9213–9222.

- [15] W. Wu, X. Wen and Z. L. Wang, *Science*, 2013, **340**, 952–957.
- [16] L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang and J.A. Rogers, *Nat. Commun.*, 2013, 4, 1633.
- [17] T. Sharma, S. -S. Je, B. Gill and J. X. Zhang, Sens. Actuators A, 2012, 177, 87–92.
- [18] X. Chen, J. Shao, N. An, X. Li, H. Tian, C. Xu and Y. Ding, *J. Mater. Chem. C*, 2015, 3, 11806-11814.
- [19] X. Chen, H. Tian, X. Li, J. Shao, Y. Ding, N. An and Y. Zhou, Nanoscale, 2015, 7, 11536–11544.
- [20] X. Chen, X. Li, J. Shao, N. An, H. Tian, C. Wang, T. Han, L. Wang and B. Lu, *Small*, 2017, 13, 1604245.
- [21] N. T. Tien, S. Jeon, D.-I. Kim, T. Q. Trung, M. Jang, B.-U. Hwang, K.-E. Byun, J. Bae,
 E. Lee, J. B.-H. Tok, Z. Bao, N.-E. Lee and J. -J. Park, *Adv.Mater.*, 2014, 26, 796–804.
- [22] D.-I. Kim, T. Q. Trung, B.-U. Hwang, J.-S. Kim, S. Jeon, J. Bae, J.-J. Park and N.-E. Lee, *Sci. Rep.*,2015,**5**, 12750.
- [23] I. Graz, M. Krause, S. B. -Gogonea, S. Bauer, S. P. Lacour, B. Ploss, M. Zirkl, B. Stadlober and S. Wagner, *J. Appl. Phys.* 2009, **106**, 034503.
- [24] A. B. Joshi, A. E. Kalange, D. Bodas and S. A. Gangal, *Mater. Sci. Eng. B*, 2010, 168, 250.
- [25] I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S. P. Lacour and S. Wagner, *Appl. Phys. Lett.*, 2006, **89**, 073501.

[26] J. Tsai, J. Wang and Y. Su, Piezoelectric rubber films for human physiological monitoring and energy harvesting, IEEE 26th International Conference Micro Electro Mech. Syst. (MEMS), 2013, 841–844.

[27] X. Zhang, X. Zhang, G. M. Sessler and X. Gong, J. Phys. D: Appl. Phys., 2014, 47, 015501.