Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

## **Supporting Information**

For the Article

## Hybrid Nanoparticles Coated with Hyaluronic Acid Lipoid for Targeted Codelivery of Paclitaxel and Curcumin to Synergistically Eliminate Breast Cancer Stem Cells

Zhe Yang<sup>a,†</sup>, Na Sun<sup>a,†</sup>, Rui Cheng<sup>a</sup>, Chenyang Zhao<sup>a</sup>, Jie Liu<sup>b,\*</sup>, Zhongmin Tian<sup>a,\*</sup>

<sup>a</sup> The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

<sup>b</sup> Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China

<sup>†</sup> These authors contribute equally to this work.

\* Corresponding author

\* E-mail: <u>liujie56@mail.sysu.edu.cn;</u>

zmtian@xjtu.edu.cn

\* Tel/Fax: 0086-20-3933-2145

0086-29-82667331





Figure S1. Characterization of the structure of the HA-HDA using <sup>1</sup>H-NMR (D<sub>2</sub>O).





Figure S2. The CD44 expression of the MCF7 adherent cells and MCF7 mammosphere cells.

**Table S1.** The inhibitory efficiency of HA-Hybrid NPs/PTX+CUR with different weight ratios of CUR *vs.* PTX against MCF7 mammosphere cells. Data are given as mean  $\pm$  SD (n = 3).

| Concentration Ratio (CUR : PTX) | Inhibitory Efficiency (%) |
|---------------------------------|---------------------------|
| <sup>a</sup> 750 : 1            | $78.9 \pm 5.5$            |
| <sup>b</sup> 500 : 1            | $72.9 \pm 2.5$            |
| ° 250 : 1                       | $57.9 \pm 4.1$            |
| <sup>d</sup> 100 : 1            | $35.8 \pm 7.5$            |

 $^a$  Concentration of PTX: 0.005  $\mu g/mL,$  concentration of CUR: 3.79  $\mu g/mL;$ 

 $^{\rm b}$  Concentration of PTX: 0.005  $\mu g/mL,$  concentration of CUR: 2.57  $\mu g/mL;$ 

<sup>c</sup> Concentration of PTX: 0.005 µg/mL, concentration of CUR: 1.18 µg/mL;

<sup>d</sup> Concentration of PTX: 0.005 µg/mL, concentration of CUR: 0.52 µg/mL.

| Sample                   | Size (nm)  | PDI       | Zeta Potential<br>(mV) | Drug Loading (µg/mg) |              | Entrapment Efficiency (%) |          |
|--------------------------|------------|-----------|------------------------|----------------------|--------------|---------------------------|----------|
|                          |            |           |                        | PTX                  | CUR          | PTX                       | CUR      |
| HA-Hybrid<br>NPs/PTX     | 365.9± 5.9 | 0.23±0.06 | -22.4±2.5              | $1.94 \pm 0.51$      | /            | 47.8±5.4                  | /        |
| HA-Hybrid<br>NPs/CUR     | 347.9±10.3 | 0.26±0.02 | -22.9±3.4              | /                    | 967.6 ± 16.8 | /                         | 35.7±4.3 |
| HA-Hybrid<br>NPs/PTX+CUR | 334.1±12.9 | 0.18±0.03 | -22.5±4.5              | $1.75 \pm 0.46$      | 886.7 ± 23.4 | 44.6±3.7                  | 32.0±4.6 |

**Table S2.** Characterization of the PTX- or CUR-loaded NPs with different formulations. Data are given as mean  $\pm$  SD (n = 3).

Figure S3



**Figure S3.** The *in vitro* PTX and CUR release profiles of PTX- and CUR-loaded NPs in PBS (pH 7.4) and acetate buffer solution (pH 5.0) at 37 °C. Data are given as mean  $\pm$  SD (n = 3).



**Figure S4.** The cell viability of MCF7 mammosphere cells after treated with blank HA-Hybrid NPs at varying concentration for 48 h. Data are given as mean  $\pm$  SD (n = 5).



**Figure S5** 

**Figure S5.** Plasma CUR (A) and PTX (B) concentration versus time after intravenous administration of Free PTX+CUR, PLGA NPs/PTX, PLGA NPs/CUR and HA-Hybrid NPs/PTX+CUR for 24 h at an equivalent dose of 10 mg CUR and 10 mg PTX per kg of mice body (n=4). HPLC analysis of the CUR (C) and PTX (D) concentrations in MCF7 xenograft tumors after 24 h i.v. administration of different drug formulations (n=4). Data are given as mean  $\pm$  SD. \* represents p<0.05.