## **Electronic Supplementary Information**

## An anthraquinone-based highly selective colorimetric and fluorometric sensor for sequential detection of Cu<sup>2+</sup> and S<sup>2-</sup> with intracellular application

Lingjie Hou<sup>a</sup>, Xiangyu Kong<sup>a</sup>, Yishou Wang<sup>a</sup>, Jianbin Chao<sup>b</sup>, Chenzhong Li<sup>c</sup>, Chuan Dong<sup>d</sup>, Yu Wang<sup>a,\*</sup> and Shaomin Shuang<sup>a,\*</sup>

<sup>a</sup>College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China. <sup>b</sup>Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China.

<sup>c</sup>Nanobioengineering /Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, Miami, USA.

<sup>d</sup>Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.

## Supplementary figures

Fig. S1 <sup>1</sup>H NMR spectrum of compound L.

Fig. S2 <sup>13</sup>C NMR spectrum of compound L.

Fig. S3 ESI-mass spectrum of compound L.

**Fig. S4** The absorption at 628nm of **L** as a function of time after adding  $Cu^{2+}$ . [L] = 2×10<sup>-5</sup> M, [Cu<sup>2+</sup>]=1×10<sup>-4</sup> M.

**Fig. S5** Nanosecond fluorescence lifetime decay profiles of **L** upon the addition of  $Cu^{2+}$  ion. THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl), [L]=8×10<sup>-6</sup> M, [Cu<sup>2+</sup>]= 8×10<sup>-6</sup> M.

**Fig. S6** (a) Effect of different metal ions on fluorescence spectra of L in THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl),  $[L]=8\times10^{-6}$  M,  $[M^{n+}]=1.6\times10^{-5}$  M; (b) metal-ion responses for L (8 µM) in the absence and presence of metal ions in THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl),  $[Cu^{2+}]=1.6\times10^{-5}$  M,  $[M^{n+}]=1.6\times10^{-5}$  M; (c) The influence with higher concentration of K<sup>+</sup>, Ca<sup>2+</sup>, N<sup>a+</sup>, Mg<sup>2+</sup> ions on fluorescence spectra of L and L+Cu<sup>2+</sup>,  $[L]=8.0\times10^{-6}$  M,  $[Cu^{2+}]=1.6\times10^{-5}$  M,  $[M^{n+}]=1.0\times10^{-2}$  M; (d) The influence with higher concentration of K<sup>+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup> ions on UV-vis spectra of L and L+Cu<sup>2+</sup>,  $[L]=2.0\times10^{-5}$  M,  $[Cu^{2+}]=4.0\times10^{-5}$  M,  $[M^{n+}]=1.0\times10^{-2}$  M.

**Fig. S7** (a) Effect of pH on fluorescence at 604 nm of L and L-Cu<sup>2+</sup> ensemble in THF/H<sub>2</sub>O (1:1, v/v), [L] =  $8 \times 10^{-6}$  M, [Cu<sup>2+</sup>]= $4 \times 10^{-5}$  M; (b)Effect of pH on absorbance at 628 nm of L and L-Cu<sup>2+</sup> ensemble in THF/H<sub>2</sub>O (1:1, v/v), [L] =  $2 \times 10^{-5}$  M, [Cu<sup>2+</sup>]= $1 \times 10^{-4}$  M.

**Fig. S8** The stability of **L** and **L+Cu<sup>2+</sup>** in THF:H<sub>2</sub>O=1:1 (v/v), pH=7.4 (tris-HCl).

**Fig. S9** (a) Job's plot from fluorescence emission for L and  $Cu^{2+}$  complexation in THF:H<sub>2</sub>O=1:1 (v/v), pH=7.4 (tris-HCl). The total concentration of L and  $Cu^{2+}$  is  $2 \times 10^{-5}$  M; (b) Benesi-Hildebrand plot from fluorescence titration data of L with  $Cu^{2+}$ .

**Fig. S10** (a) Anion fluorescence responses for **L-Cu**<sup>2+</sup> in the absence and presence of anions in THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl), [L]=[Cu<sup>2+</sup>]=8×10<sup>-6</sup> M, [anion]=  $6.4\times10^{-5}$  M; (b) Anion UV-vis responses for **L-Cu**<sup>2+</sup> in the absence and presence of anions (top) and their corresponding colorimetric responses (bottom). THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl) [L]=[Cu<sup>2+</sup>]=2×10<sup>-5</sup> M, [anion]=  $1.6\times10^{-4}$  M.

**Fig. S11** The kinetic study of the response of  $L-Cu^{2+}$  to  $S^{2-}$  (6 equiv) under pseudo-first-order conditions. [L]=  $[Cu^{2+}] = 2 \times 10^{-5}$  M,  $[S^{2-}] = 1.2 \times 10^{-4}$  M.

**Fig. S12** Absorbance changes of L at 628nm upon alternate addition of Cu<sup>2+</sup> and S<sup>2-</sup>. THF:H<sub>2</sub>O=1:1 (v/v), pH=7.4 (tris-HCl), [L] = $2 \times 10^{-5}$  M.

**Fig. S13** Photographs of test strips of **L-Cu<sup>2+</sup>** at various concentrations of S<sup>2-</sup>: (from left to right, 0 mol/L,  $0.8 \times 10^{-3}$  mol/L,  $1.6 \times 10^{-3}$  mol/L,  $2.4 \times 10^{-3}$  mol/L,  $3.2 \times 10^{-3}$ mol/L) **Fig. S14** Cell cytotoxic effect of **L**, Cu<sup>2+</sup>, S<sup>2-</sup>, CuS on SMMC-7721 cells.



Fig. S1 <sup>1</sup>H NMR spectrum of compound L.



Fig. S2 <sup>13</sup>C NMR spectrum of compound L.



Fig. S3 ESI-mass spectrum of compound L.



**Fig. S4** The absorption at 628nm of **L** as a function of time after adding  $Cu^{2+}$ . [L] = 2×10<sup>-5</sup> M,  $[Cu^{2+}]=1\times10^{-4}$  M.



**Fig. S5** Nanosecond fluorescence lifetime decay profiles of L upon the addition of  $Cu^{2+}$  ion. THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl), [L]=8×10<sup>-6</sup> M, [Cu<sup>2+</sup>]=8×10<sup>-6</sup> M.



**Fig. S6** (a) Effect of different metal ions on fluorescence spectra of L in THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl), [L]= $8.0 \times 10^{-6}$  M, [M<sup>n+</sup>]=  $1.6 \times 10^{-5}$  M; (b) metal-ion responses for L (8 µM) in the absence and presence of metal ions in THF:H<sub>2</sub>O=1:1(v/v), pH=7.4 (tris-HCl), [Cu<sup>2+</sup>]= $1.6 \times 10^{-5}$  M, [M<sup>n+</sup>]=  $1.6 \times 10^{-5}$  M; (c) The influence with higher concentration of K<sup>+</sup>, Ca<sup>2+</sup>, N<sup>a+</sup>, Mg<sup>2+</sup> ions on fluorescence spectra of L and L+Cu<sup>2+</sup>, [L]= $8.0 \times 10^{-6}$  M, [Cu<sup>2+</sup>]= $1.6 \times 10^{-5}$  M, [M<sup>n+</sup>]=  $1.0 \times 10^{-2}$  M; (d) The influence with higher concentration of K<sup>+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup> ions on UV-vis spectra of L and L+Cu<sup>2+</sup>, [L]= $2.0 \times 10^{-5}$  M, [Cu<sup>2+</sup>]= $4.0 \times 10^{-5}$  M, [M<sup>n+</sup>]=  $1.0 \times 10^{-2}$  M.



**Fig. S7** (a) Effect of pH on fluorescence at 604 nm of L and L-Cu<sup>2+</sup> ensemble in THF/H<sub>2</sub>O (1:1, v/v), [L] =  $8 \times 10^{-6}$  M, [Cu<sup>2+</sup>]= $4 \times 10^{-5}$  M; (b) Effect of pH on absorbance at 628 nm of L and L-Cu<sup>2+</sup> ensemble in THF/H<sub>2</sub>O (1:1, v/v), [L] =  $2 \times 10^{-5}$  M, [Cu<sup>2+</sup>]= $1 \times 10^{-4}$  M.



Fig. S8 The stability of L and L+Cu<sup>2+</sup> in THF:H<sub>2</sub>O=1:1 (v/v), pH=7.4 (tris-HCl).



**Fig. S9** (a) Job's plot from fluorescence emission for L and  $Cu^{2+}$  complexation in THF:H<sub>2</sub>O=1:1 (v/v), pH=7.4 (tris-HCl). The total concentration of L and  $Cu^{2+}$  is 2×10<sup>-5</sup> M; (b) Benesi-Hildebrand plot from fluorescence titration data of L with  $Cu^{2+}$ .









**Fig. S11** The kinetic study of the response of  $L-Cu^{2+}$  to  $S^{2-}$  (6 equiv) under pseudo-first-order conditions. [L]=  $[Cu^{2+}] = 2 \times 10^{-5}$  M,  $[S^{2-}]=1.2 \times 10^{-4}$  M.



**Fig. S12** Absorbance changes of **L** at 628nm upon alternate addition of  $Cu^{2+}$  and  $S^{2-}$ . THF:H<sub>2</sub>O=1:1 (v/v), pH=7.4 (tris-HCl), [L] =2×10<sup>-5</sup> M.



**Fig. S13** Photographs of test strips of L-Cu<sup>2+</sup> at various concentrations of S<sup>2-</sup>: (from left to right, 0 mol/L,  $0.8 \times 10^{-3}$  mol/L,  $1.6 \times 10^{-3}$  mol/L,  $2.4 \times 10^{-3}$  mol/L,  $3.2 \times 10^{-3}$ mol/L)



Fig. S14 Cell cytotoxic effect of L,  $Cu^{2+}$ ,  $S^{2-}$ , CuS on SMMC-7721 cells.