Electronic Supplementary Information for

Anchored protease-activatable polymersome for molecular diagnostics of metastatic cancer cells

Hyun-Ouk Kim^a, Jihye Choi^c, Hwunjae Lee^d, Hyeyoung Son^b, Jong-Woo Lim^a, Jihye Kim^a, Geunseon Park^a, Haejin Chun^a, Daesub Song^e, Yong-Min Huh^{b,*}, and Seungjoo Haam^{a,*}

^a Department of Chemical & Biomolecular Engineering, Yonsei University, Republic of Korea

^b Department of Radiology, College of Medicine, Yonsei University, Republic of Korea

^c Department of Radiation Oncology, Medical Physics, Stanford University, USA.

^d Korea Basic Science Institute (KBSI)., Republic of Korea

^e Department of Pharmacy, College of Pharmacy, Korea University, Republic of Korea.

*Correspondence should be addressed to Y. H. (E-mail: ymhuh@yuhs.ac) and S. H.

(E-mail: haam@yonsei.ac.kr)

Fig S1. Synthesis and characterization of MT1-MMP-antagonist peptide formulated PSomes. Syntheses pathways to (a) mPEG-b-pLeu and (b) MT1-Peptide-b-pLeu: (i) 4-Toluenesulfonyl chloride, Toluene, R.T., (ii) NaN3, DMF, 90°C, (iii) PPh3, MeOH, 70°C, (iv) Leu-NCA, DMF, 40°C, and (v) 20% pepridine, DMSO, R.T.

Fig S2. FT-IR spectra of: (i) mPEG, (ii) mPEG-TsCl, (iii) mPEG-N₃, and (iv) mPEG-NH₂. The typical CH₃ of mPEG at 2850cm⁻¹, S-O of the mPEG-TsCl at 560 cm⁻¹, and N₃ of the mPEG-N₃ at 2103 cm⁻¹.

Fig S3. GPC profiles of: (i) mPEG, (ii) mPEG-TsCl, (iii) mPEG-N₃, and (iv) mPEG-NH₂.

Fig S4. ¹**H-NMR spectra of:** (i) mPEG, (ii) mPEG-TsCl, (iii) mPEG-N_{3.} and (iv) mPEG-NH₂. The typical **2<u>H</u>** of TsCl at 7.79 and 7.49 ppm, and **C<u>H</u>₂-NH₂** of the mPEG-NH₂ at 2.90 ppm.

Fig S5. FT-IR spectra of: (i) mPEG, (ii-v) mPEG-b-pLeu ($f_{mPEG} = 0.33$, 0.39, 0.54, and 0.64), and (vi) DL-leucine. Typical **amide I** and **amide II bonds** of mPEG-b-pLeu at 1660 and 1754 cm⁻¹, respectively.

Fig S6. ¹H-NMR spectra of: (i) mPEG, (ii-v) mPEG-b-pLeu ($f_{mPEG} = 0.33$, 0.39, 0.54, and 0.64), and (vi) DL-leucine. Typical methyl protons of pLeu at 0.90 ppm.

Fig S7. ¹H-NMR spectra of: Fmoc-MT1-MMP-antagonist peptide. The typical $2C\underline{H}_2$ of MT1-MMP antagonist peptide at 7.55 ppm and the $2C\underline{H}_3$ of leucine at 0.87 ppm.

Fig S8. ¹**H-NMR spectra of:** (i) Leu-NCA, (ii) pLeu, (iii) MT1-MMP-antagonist peptide-b-pLeu (Dep.), (iv) Fmoc-MT1-MMP-antagonist peptide-b-pLeu, and Fmoc-MT1-MMP-antagonist peptide.

Fig S9. Kinetics of cargo release from calcein-loaded PeptiSomes and PSomes induced by MT1-MMP. (a) Release profiles of calcein-loaded PeptiSomes in the presence of the small-molecule inhibitor GM6001. (b) MT1-MMP sequence-specific release of calcein from a mixture of (i) calcein-loaded PeptiSomes and non-loaded PSomes, and (ii) a mixture of non-loaded PeptiSomes and calcein-loaded PSomes.

Sample _	Yield	Conversion Yield	Molar Mass (g/mol)	
	(%)	(%)	GPC	¹ H-NMR
mPEG ₂₀₀₀	-	100	2000	-
mPEG-TsCl	88	93	1953	2168
mPEG-N ₃	84	99	1988	2074
mPEG-NH ₂	94	98	1988	2048

Table S1. Characterization of the synthesis of $mPEG-NH_2$.

Sample _	f _{mPEG} ^a	Mw ^b	f _{mPEG} ^c	MW ^d
	(%)	(g/mol)	(%)	(g/mol)
mPEG ₄₄ -b- pLeu ₃₅	0.30	6591.3	0.33	6066.6
mPEG ₄₄ -b- pLeu ₂₃	0.40	5017.1	0.39	4885.9
mPEG ₄₄ -b- pLeu ₁₅	0.50	3967.7	0.54	3705.3
mPEG ₄₄ -b- pLeu ₁₀	0.60	3311.8	0.64	3115.0

Table S2. Characterization of the synthesis of mPEG-b-pLeu.

^{a, b} Calculated from the initial ratio of monomer to mPEG amine groups.
^c Calculated weight fraction of mPEG in block copolymers based on (d).
^d Determined from ¹H-NMR analysis by calculating the ratio of the methyl groups within pLeu.