Electronic Supplementary Material (ESI)

Cationic Nioplexes-*in*-Polysaccharide-Based Hydrogels as Versatile Biodegradable Hybrid Materials to Deliver Nucleic Acids

Santiago Grijalvo, Adele Alagia, Gustavo Puras, Jon Zárate, Judith Mayr, José Luis Pedraz, Ramon Eritja and David Díaz Díaz^{*}

SUMMARY

TEM image of nioplexes	S 3
Encapsulation efficiencies and rheological parameters	S 3
Standard calibration curve	S 3
Niosomal release model according to Higuchi equation	S4
Niosomal release model according to Korsmeyer-Peppas' equation	S4
Niosomal release model according to Weibull equation	S4
Niosomal release profiles as a function of log cumulative release vs time	S5
Dynamic light scattering (DLS) of released nioplexes	S6
Cryo-SEM images	S6
Flow cytometry analysis	S7

Table S1 Encapsulation efficiencies of cationic nioplexes and rheological parameters for Hydrogel_3 and Hydrogel_4. Native hydrogels (Hydrogel_1 and _2) were used as controls for comparison purposes.

Entry	Polysaccharide ^a	Hydrogel	Entrapped	EEpp	G' ^c	<i>G″</i> ^d	γ ^e	tan
			nioplexes	(%)	(kPa)	(kPa)	(%)	δ
1	КС	3	yes	95.7	36742	8757	1.1	0.13
2	MC:KC	4	yes	98.4	2413	535.6	41	0.16
3	КС	1	-	-	71877	11615	0.68	0.21
4	MC:KC	2	-	-	1026	192	3.9	0.23

^aκ-Carrageenan (KC) (4 %; w/v); 1:1 mixture of methylcellulose:κ-carrageenan (MC:KC) (2 %, w/v) (in total 4 % wt of polymers); ^bencapsulation efficiency; ^cstorage modulus; ^dloss modulus; ^eγ at break.

Figure S2 Standard calibration curve.

Table S2 Model release parameters for Hydrogel_**3** and _**4** according to Higuchi equation: $MtM \infty = K * t$

Entry	Hydrogel	k	r^2
1	3	3.57	0.9947
2	4	2.14	0.9690

Table S3 Model release parameters for Hydrogel_**3** and _**4** according to Korsmeyer-Peppas' equation. The model was fitted for the first 60 % of the niosomal FITC-ODN release: $MtM \infty = K * tn$

Entry	Hydrogel	k	n	r^2
1	3	2.58	0.55	0.9994
2	4	3.89	0.41	0.9928

Table S4 Model release parameters for Hydrogel_**3** and _**4** according to Weibull equation: $MtM \propto = \alpha * (1 - \exp(-kt)b)$

Entry	Hydrogel	α	k	b	r^2
1	3	561,8	0,0021	1,051	0.9567
2	4	104,2	0,0011	0,58	0.9837

Figure S3 Niosomal release profiles of niosomal FITC-ODN from Hydrogels **_3** and **_4** according to Korsmeyer-Peppas' equation. The regression coefficient (r^2) for the Korsmeyer-Peppas equation was 0.9994 and 0.9928 for Hydrogel**_3** and **_4**, respectively (using the first 60 % of niosomal release). On the contrary, r^2 values were lower when Higuchi equation (0.9947 and 0.9690) and Weibull release model (0.9567 and 0.9837) were used for Hydrogel**_3** and **_4**, respectively.

Figure S4 Average hhydrodynamic diameter and polydispersity degree of cationic nioplexes after complete KC (Fig. S3A) and MC:KC (Fig. S3B) hydrogels degradation. Hydrodynamic diameter of nioplexes before being encapsulated within KC and MC:KC hydrogels were measured as a control.

Figure S5 Cryo-SEM images of A) KC hydrogels (Hydrogel_1) and B) native cationic nioplexes loaded in KC hydrogels (Hydrogel_3). Cationic nioplexes were obtained using 300 nM of FITC-ODN with a N/P ratio of 14.

Figure S6 Cryo-SEM images of 1:1 mixture of MC:KC hydrogels (Hydrogel_3).

Figure S7 Flow cytometry analysis of HeLa cells treated with pGFP (formulated in liposomes with lipofectamine).

NOTE: *NANBIOSIS* is one of the 29 Singular Scientific Technological Infrastructures (ICTS) recently recognized by the Spanish Council for Science Policy, Technology and Innovation (MINECO).