## **Electronic Supplementary Information**

## Multifunctional Phase-Change Hollow Mesoporous Prussian Blue Nanoparticles as a NIR Light Responsive Drug Co-Delivery System to Overcome Cancer Therapeutic Resistance

Huajian Chen<sup>a</sup>, Yan Ma<sup>a</sup>\*, Xianwen Wang<sup>a</sup>, and Zhengbao Zha<sup>a</sup>\*

<sup>a</sup>School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.

\* Corresponding author. Email: <a href="mailto:yanma@hfut.edu.cn">yanma@hfut.edu.cn</a>; <a href="mailto:zbzha@hfut.edu.cn">zbzha@hfut.edu.cn</a>; <a href="mailto:Tel:+8655162901285">Tel:+8655162901285</a>.



**Fig. S1** UV-vis-NIR spectra of PCM@HMPBs dispersed in DMEM cell culture medium with a test background of DI water



**Fig. S2** Diameter distribution of a) HMPBs and b) PCM@HMPBs in DI Water from DLS test.

| Feeding amount of<br>DOX:CPT (mg) | DOX (µg/200 µg NPs) | СРТ (µg/200 µg NPs) |
|-----------------------------------|---------------------|---------------------|
| 6:1.5                             | 2.63                | 0.55                |
| 6:3                               | 3.30                | 1.36                |
| 6:6                               | 3. 31               | 2.42                |
| 6:12                              | 3.10                | 3.70                |
| 1.5:6                             | 1.15                | 2.72                |
| 3:6                               | 1.48                | 3.24                |
| 12:6                              | 4. 42               | 3. 21               |

Table S1 Various drug loading amount of (PCM+drugs)@HMPBs system



Fig. S3 DSC curve of received 1-tetradecanol.



Fig. S4 Miscible property of 1-tetradecanol and hydrophilic DOX.



Fig. S5 Miscible property of 1-tetradecanol and hydrophobic CPT.



**Fig. S6** a) UV-vis-NIR spectra of free DOX, PCM@HMPBs and (PCM+DOX)@HMPBs (inset: TEM image of (PCM+DOX)@HMPBs); b) fluorescent spectra of free DOX and (PCM+DOX)@HMPBs before and after methanol treatment; c) UV-vis-NIR spectra of free CPT, PCM@HMPBs and (PCM+CPT)@HMPBs (inset: TEM image of (PCM+CPT)@HMPBs); d) fluorescent spectra of free CPT and (PCM+CPT)@HMPBs before and after methanol treatment.



**Fig. S7** Thermo-responsive release profiles of DOX from (PCM+DOX)@HMPBs at different temperatures.



**Fig. S8** Thermo-responsive release profiles of CPT from (PCM+CPT)@HMPBs at different temperatures.



**Fig. S9** The "on" and "off" switch of DOX release profiles of (PCM+DOX)@HMPBs under NIR light irradiation (808 nm, 2.0 W).



**Fig. S10** The "on" and "off" switch of CPT release profiles of (PCM+CPT)@HMPBs under NIR light irradiation (808 nm, 2.0 W).



**Fig. S11** Cell viability of HeLa cancer cells after treatment with (PCM+DOX)@HMPBs and NIR laser irradiation for various times: a) 0 min; b) 3 min and c) 5 min. PCM@HMPBs and free DOX were used as controls.



**Fig. S12** Cell viability of HeLa cancer cells after treatment with (PCM+CPT)@HMPBs and NIR laser irradiation for various times: a) 0 min; b) 3 min and c) 5 min. PCM@HMPBs and free CPT were used as controls.