Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

1	Electronic Supplementary Information
2	Facile Synthesis of Core-shell Structured Magnetic Covalent Organic
3	Framework Composite Nanospheres for Selective Enrichment of Peptides with
4	Simultaneous Exclusion of Proteins
5	Chaohong Gao, ^{†,§} Guo Lin, ^{†,§} Zhixian Lei, [†] Qiong Zheng, [†] Jiashi Lin, [‡] and Zian Lin ^{*†}
6 7 8	Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
9	
10	
11	• First corresponding author: Zi-an Lin;
12	• Second corresponding author: Jiashi Lin
13	• Postal address: College of Chemistry, Fuzhou University, Fuzhou, Fujian,
14	350108, China
15	• Fax: 86-591-22866165
16	• E-mail: zianlin@fzu.edu.cn (Z.A. Lin);
17	The first two authors contributed equally to this paper
18	
19	
20	

21 MS analysis and database searching.

Mass spectrometry (MS) analysis was conducted on a HPLC-Q-TOF MS containing a 1260 series 22 HPLC system with a binary SL pump and an Agilent 6520 Q-TOF with dual electrospray 23 ionization source (ESI). The separation of all samples were collected on an Agilent Poroshell 120 24 EC-C18 column (2.7 μ m, 3.0 mm \times 50 mm, Agilent). The flow rate was set as 0.3 mL min⁻¹. 25 Solvent A was composed of aqueous solution containing 0.1% formic acid and solvent B consisted 26 27 of ACN containing 0.1% formic acid. The gradient elution program was as follows: in the original 3 min, maintained at 3% B, then linear gradient to 40% B within 20 min, and keep rising to 80% B 28 within 3 min and maintaining for 2 min. After a back wash step was performed with 80 % B for 3 29 min, the column was equilibrated with 3 % B within 4 min. The column temperature was held at 40 30 31 °C and the sample injection volume was 10 μ L. The MS system was dried by Nitrogen at 350 °C with a flow rate of 10 L min⁻¹. Both full scan MS data and MS/MS data were obtained at m/z 300-32 2000 and 100–3000, respectively. Scan rates for MS and MS/MS data were tuned to 3 spectra s⁻¹. 33 The voltage was set as 4 kV for the MS capillary and the voltage of fragmentor was set as 175 V. In 34 the MS2 experiments, the collision energy was set up in terms of formula, where the top three 35 highest intensity peaks in each mass spectra were chosen for collision-induced dissociation. 36 Isolation width for MS^2 was ± 4 amu. 37

All the LC-MS/MS raw data were measured on a Spectrum Mill versionA.03.03 software (Agilent Technologies). The mass tolerances were 100 ppm for parent ions and 200 amu for fragment ions. Trypsin restriction was set with two missed cleavages. Carboxymethylation was set as the static modification; oxidized methionine was set as the variable modifications.

42

48 Fig. S1 XRD patterns of the Fe₃O₄@TbBd nanospheres treated with ACN, DMF, 10 mM HCl,
49 1mM NaOH and water for overnight.

52 Fig. S2 FT-IR spectra of the Fe₃O₄@TbBd nanospheres treated with ACN, DMF, 10 mM HCl,

53 1mM NaOH and water for overnight.

56 Fig. S3 Recycled use of the Fe₃O₄@TbBd nanospheres for FGFGF adsorption. Amount of 57 Fe₃O₄@TbBd nanospheres: 0.3 mg; binding media: 300 μ L eluent (50% ACN aqueous solution); 58 incubation time: 10 min; C_{FGFGF}: 70 μ g/mL.

Fig. S4 Separation of 50-fold diluted human serum spiked with 25 μ g/mL FGFGF before and after treatment with the Fe₃O₄@TbBd. (A) The human serum spiked with FGFGF, (B) the supernatant, and (C) the eluate. The following gradient program was used: 0-12 min, 3-90% B; 12-12.5 min, 8 90% B; 12.5-13 min, 90-13% B; 14 min, stop.

- ,0

78 Table S1. Proteins in human serum were identified by HPLC-Q-TOF/MS before and after

79 treatment with the Fe_3O_4 (a) TbBd nanospheres.

		Before enrichment				After enrichment	
Database Accession	Protein Name	Distinct Peptides	% AA Coverage	Mean Peptide Spectral Intensity	Distinct Peptides	% AA Coverage	Mean Peptide Spectral Intensity
P02768	Serum albumin precursor	39	64	1.20e+005	20	25	1.98e+005
P01871	Ig mu chain C region	/	/	/	3	5	1.80e+004
P04220	Ig mu heavy chain disease protein	/	/	/	2	4	2.24e+004
P01857	Ig gamma-1 chain C region	5	19	7.31e+004	9	19	1.24e+005
P01859	Ig gamma-2 chain C region	4	13	3.41e+004	5	16	7.37e+004
P01861	Ig gamma-4 chain C region	3	11	4.29e+004	3	8	1.06e+005
P01860	Ig gamma-3 chain C region	3	9	4.06e+004	3	8	1.14e+004
P01834	Ig kappa chain C	3	50	5.68e+004	2	31	5.88e+004
P02647	Ig lambda chain C regions	3	11	1.57e+004	4	17	2.81e+004
P01842	Ig kappa chain C region	2	23	2.82e+004	\	\	\
P01876	Ig alpha-1 chain C region	/	/	/	2	5	3.10e+004
P01877	Ig alpha-2 chain C region	/	/	/	1	2	2.79e+004
P01023	Alpha-2-macroglobulin	/	/	/	3	2	1.03e+003

	P20742	Pregnancy zone protein precursor		1	0	8.21e+004
80						
81						
82						
83						
84						
85						
86						
87						
88						
89						
90						
91						
92						
93						
94						
95						
96						
97						
98						
99						

precursor

100	Table S2. Serum peptides of	human serum digest (S	5 ng/ μ L) identified	by HPLC-Q-TOF/MS before
-----	-----------------------------	-----------------------	---------------------------	-------------------------

101 and after treatment with the Fe $_3O_4$ (*a*)TbBd nanospheres.

No. Mw		Amino acid	GRAV	Before	After
		sequence ^[a]	Y ¹⁰¹	enrichment	enrichment
				[c]	
1	2778.359	(R)LVRPEVDVMcTAFHDNEETFLKK(Y)	-0.45		×
2	2650.264	(R)LVRPEVDVMcTAFHDNEETFLK(K)	-0.29	V	×
3	2585.118	(K)VHTEccHGDLLEcADDRADLAK(Y)	-0.84		×
4	2518.214	(R)MPcAEDYLSVVLNQLcVLHEK(T)	0.17		×
5	2490.285	(K)ALVLIAFAQYLQQcPFEDHVK(L)	0.39	V	×
6	2260.023	(K)EFNAETFTFHADIcTLSEK(E)	-0.4	\checkmark	×
7	2139.027	(R)TPEVTcVVVDVSHEDPEVK(F)	-0.27	\checkmark	×
8	2135.969	(K)VDNALQSGNSQESVTEQDSK(D)	-1.29	\checkmark	×
9	2086.838	(K)VHTEccHGDLLEcADDR(A)	-1.14	\checkmark	×
10	2045.095	(K)VFDEFKPLVEEPQNLIK(Q)	-0.35	\checkmark	\checkmark
11	1932.037	(K)SLHTLFGDKLcTVATLR(E)	0.35		
12	1910.932	(R)RPcFSALEVDETYVPK(E)	-0.54	\checkmark	×
13	1875.927	(K)VYAcEVTHQGLSSPVTK(S)	-0.14		
14	1797.895	(K)SGTASVVcLLNNFYPR(E)	0.23	\checkmark	\checkmark
15	1793.991	(R)VVSVLTVVHQDWLNGK(E)	0.51	×	V
16	1711.759	(R)SYScQVTHEGSTVEK(T)	-1.05	\checkmark	×
17	1677.802	(K)FNWYVDGVEVHNAK(T)	-0.46	×	\checkmark
18	1657.753	(K)QNcELFEQLGEYK(F)	-1.35		×
19	1639.938	(K)KVPQVSTPTLVEVSR(N)	-0.07	V	\checkmark
20	1612.785	(K)LLDNWDSVTSTFSK(L)	-0.32	×	
21	1552.598	(K)ccAAADPHEcYAK(V)	-0.98		×
22	1546.797	(K)LKEccEKPLLEK(S)	-1.24		×

23	1511.843	(K)VPQVSTPTLVEVSR(N)	0.21	\checkmark	\checkmark
24	1498.578	(K)TcVADESAENcDK(S)	-1.37		×
25	1443.642	(K)YIcENQDSISSK(L)	-1.15		×
26	1434.533	(R)ETYGEMADccAK(Q)	-1.13		×
27	1423.71	(R)STSESTAALGcLVK(D)	0.29		×
28	1416.828	(K) <mark>MV</mark> SGFIPLKPTVK(M)	0.65	×	
29	1386.715	(K) <mark>V</mark> SFLSALEEYTK(K)	0.16		
30	1371.567	(K)AAFTEccQAADK(A)	-0.51		×
31	1342.635	(K) <mark>AVMDDFAAFV</mark> EK(C)	0.58		\checkmark
32	1321.678	(K)STSGGTAALGcLVK(D)	0.56		\checkmark
33	1287.651	(K)GPSVFPLAPcSR(S)	0.12		
34	1272.673	(R)VTAAPQSVcALR(A)	0.59	×	\checkmark
35	1255.643	(K) <mark>AI</mark> GYLNTGYQR(Q)	-0.5	×	\checkmark
36	1249.636	(K)LlcQATGFSPR(Q)	0.14	×	\checkmark
37	1235.688	(K)DLATVYVDVLK(D)	0.83		×
38	1230.709	(R)QGLLPVLESFK(V)	0.43	×	\checkmark
39	1226.605	(R)FKDLGEENFK(A)	-1.28	\checkmark	×
40	1213.632	(R)WLQGSQELPR(E)	-1.11	×	\checkmark
41	1186.647	(K)GPSVFPLAPSSK(S)	0.09	\checkmark	\checkmark
42	1186.498	(K)ScDTPPPcPR(C)	-1.99		×
43	1161.63	(K)NQVSLTcLVK(G)	0.4		\checkmark
44	1149.615	(K) <mark>LV</mark> NEVTEFAK(T)	0.17	\checkmark	\checkmark
45	1141.694	(K)KLVAASQAALGL(-)	1.18	×	\checkmark
46	1138.498	(K)ccTESLVNR(R)	-0.71		×
47	1128.699	(K)KQTALVELVK(H)	0.23		\checkmark
48	1074.543	(K)LDELRDEGK(A)	-1.69		×
49	1031.519	(K)LSPLGEEMR(D)	-0.53	\checkmark	\checkmark
50	1017.536	(K)SLHTLFGDK(L)	-0.23		×
L		1			

102	51	1013.599	(K)LVAASQAALGL(-)	1.65		
103	52	1000 (04		0.60	1	1
104	52	1000.604	(K)QIALVELVK(H)	0.69	N	N
105	53	000.51	$(K) \land CVETTTPSK(O)$	0.63	2	~
106	55	990.31	(\mathbf{K}) AUVEITIFSK (Q)	-0.05	N	^
107	54	084 488	(K)TVETTI E $K(C)$	1 3 1	N	2
108		704.400	(\mathbf{K})	-1.51	v	v
109	55	960 563	(\mathbf{K}) FONALLVR (\mathbf{Y})	0.61		
110	55	900.505		0.01	v	v
111	56	951 442	$(\mathbf{K})\mathbf{D}\mathbf{I}$ GEENFK(A)	-1 46		×
112		<i>yyiiiiiii</i>		1.10	•	
113	57	940.448	(K)DDNPNLPR(L)	-2.24		×
114					·	
115	58	933.519	(K)LcTVATLR(E)	1.1		
116					·	
117	59	931.546	(K)TPLTATLSK(S)	0.11	×	
118						
119	60	927.493	(K)YLYEIAR(R)	-0.07		
120						
120	61	900.53	(K)VSVFVPPR(D)	0.86	×	
121						
122	62	880.441	(K)AEFAEVSK(L)	-0.14		
123						
124	63	838.503	(K) <mark>AL</mark> PAPIEK(T)	0.16	\checkmark	
123						
120	64	835.434	(K)DTLMISR(T)	0.1	×	
12/						
128	65	824.488	(K)GLPAPIEK(T)	-0.11		
129						,
130	66	789.472	(K) <mark>LV</mark> TDLTK(V)	0.43	\checkmark	\checkmark
131						
132	67	775.446	(R)GFPSVLR(G)	0.5	×	\checkmark
133	(0)				1	
134	68	772.439	(K)AAcLLPK(L)	0.95		N
135	(0)			0.50	1	1
136	69	706.355	(K)cASLQK(F)	-0.52	N	N
137	70	(00.250		1	1	
138	70	698.358	(K)SEVAHR(F)	-1	N	×
	71	(74.247		1 1 5		
	/1	6/4.34/	(K)1PVSDK(V)	-1.15	×	N
	72	672 270		0.7	~	2
	12	0/3.3/0	$(\mathbf{K})\mathbf{A}$ $\mathbf{W}\mathbf{A}$ $\mathbf{V}\mathbf{A}\mathbf{K}(\mathbf{L})$	0.7	×	N

[a]The red mark in database sequence represents hydrophobic group-containing amino acids;
[b] The red mark in database sequence represents the observed hydrophobic peptides.
[c] The symbol of x and x represent with observing of peptides and without observing of peptides, 142 respectively.

Table S3. Serum peptides of human serum digest (0.5 ng/ μ L) identified by HPLC-Q-TOF/MS 150 before and after treatment with the Fe₃O₄@TbBd nanospheres.

No.	Mw	M/Z	Amino acid	GRAVY ^[b]	Before	After
			sequence ^[a]		enrichmen t	enrichment
					[¢]	
1	1910.932	673.98	(R)RPcFSAL EVDETYVPK(E)	-0.54	\checkmark	×
2	1342.635	672.32	(K)AVMDDF AAFVEK(C)	0.575	√	×
3	1149.615	575.81	(K)LVNEVTE FAK(T)	0.17	V	V
4	1138.498	570.25	(K)ccTESLV NR(R)	-0.71	V	×
5	1013.599	507.80	(K)LVAASQ AALGL(-)	1.65	×	V
6	1000.604	501.30	(K)QTALVE LVK(H)	0.69	V	V
7	960.563	481.28	(K)FQNALL VR(Y)	0.61	V	V
8	927.493	464.75	(K)YLYEIAR (R)	-0.071	V	V
9	880.441	441.22	(K)AEFAEV SK(L)	-0.14	V	×
10	789.472	395.74	(K)LVTDLT K(V)	0.43	V	
11	772.439	387.22	(K)AAcLLP K(L)	0.95	×	V

		12	706.355	354.18	(K)cASLQK(F)	-0.52	V	×	
			<u> </u>		10	7	-		
			Numb		5	6	-		
151 152 153 154	[a]] [b]] [c] resp	The red mark in database sequence represents hydrophobic group-containing amino acids; The red mark in database sequence represents the observed hydrophobic peptides. The symbol of "×" and "√" represent with observing of peptides and without observing of peptides, pectively.							
155									
156									
157									
158									
159									
160									
161									
162									
163									
164									
165									
166									
167									
168									
169									
170									
171									
172									
173									
174									
175									

- **Table S4.** List of human serum digest (0.5 $ng/\mu L$) identified by HPLC-Q-TOF/MS before and after
- 180 treatment with the Fe_3O_4 (a) TbBd nanospheres.

	S/N (signal-to-noise)					
m/z	Before enrichment	After enrichment				
672.32	14					
637.47	7					
575.81	7	51				
570.25	3					
507.80		15				
501.30	10	28				
481.28	16	33				
464.75	8	25				
441.22	7					
395.74	11	30				
387.22		14				
354.18	9					
Number of peptides	10	7				
Number of hydrophobic peptides	5	6				

181 [a] The red mark in the value of m/z represents the observed hydrophobic peptides.