Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

SUPPLEMENTRAY INFORMATION

Selective isolation of *E. coli* associated with urinary tract infection using anti-fimbrial modified magnetic reduced graphene oxide nanoheaters

Fatima Halouane,^{1,2#} Roxana Jijie,^{1#} Dalila Meziane,² Li Chengnan,¹ Santosh K. Singh,³ Julie Bouckaert,⁴ Jean Jurazek,⁵ Sreekumar Kurungot,^{3,6} Alexandre Barras,¹ Musen Li,⁷Rabah Boukherroub¹ and Sabine Szunerits^{1*}

¹Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France

²Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri, B.P N_17 RP, 15000 Tizi Ouzou, Algeria

⁷Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China

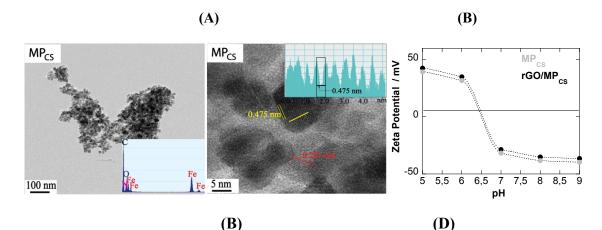
³Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India

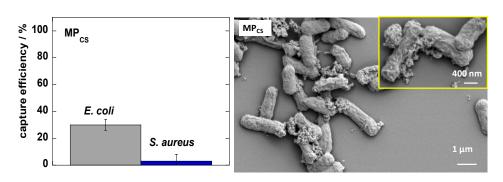
⁴Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 du CNRS et Université Lille, 50 Av. de Halley, 59658 Villeneuve d'Ascq, France

⁵Laboratoire Groupe de Physique des Matériaux (GPM); UMR6634 CNRS-Université de Rouen-INSA de Rouen; Avenue de l'Université BP12; F-76801 Saint Etienne du Rouvray

cedex

⁶Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 RafiMarg, New Delhi 110 001, India


[#]equal contribution


^{*}To whom correspondence should be send to: <u>sabine.szunerits@univ-lille1.fr</u>

Fabrication of chitosan modified magnetic particles (MP_{CS})

 $FeCl_2 \times 4H_2O$ (0.34 g, 1.7 mmol) and $FeCl_3 \times 6H_2O$ (0.95 g, 3.5 mmol) were dissolved in deareated water (20 mL) and subsequently added to a nitrogen-protected three-necked flask under sonication. The resulting mixture was heated at 50°C for 30 min. Then concentrated ammonium hydroxide (2 mL) was added dropwise and kept at 50°C for 30 min. The system was finally cooled to room temperature and the solid product was isolated *via* a non-uniform magnetic field generated by a Nd–Fe–B permanent magnet. The resulting Fe₃O₄ particles (MP) were washed six times with Milli-Q water to remove unreacted chemicals and then stored in water.

A water dispersion of bare MP (10 mg mL⁻¹, 1 mL) was mixed with chitosan (20 mg) and sonicated for 1 h at room temperature. The formed magnetic particles (MP_{CS}) were isolated by means of magnet and purified through six consecutive wash/precipitation cycles with water to ensure complete removal of unreacted chitosan. The precipitate was dried in an oven at 50°C.

Figure S1: (A) Transmission electron microscopy images and HRTEM analysis of chitosan modified particles (Inset: EDAX analysis displaying the different elements present in the sample), (B) Zeta potential of MP_{CS} and rGO/MP_{CS}as a function of solution pH; (C) Removal efficiency of rGO/MP_{CS} (500 μ g mL⁻¹) for *E. coli* and *S. aureus* (1×10⁹ cfu mL⁻¹); (D) SEM images of MP_{CS} nanoparticles mediated bacteria isolation.