Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

## **Supporting Information**

## Novel synthetic routes of large-pore magnetic mesoporous nanocomposites (SBA-15/Fe<sub>3</sub>O<sub>4</sub>) as potential multifunctional theranostic nanodevices

Z. Vargas-Osorio<sup>1,\*</sup>, M.A. González-Gómez<sup>1</sup>, Y. Piñeiro<sup>1</sup>, C. Vázquez-Vázquez<sup>2,\*</sup>, C. Rodríguez-Abreu<sup>3</sup>, M.A. López-Quintela<sup>2</sup> and J. Rivas<sup>1</sup>

<sup>1</sup> Departamento de Física Aplicada, Facultade de Física & Laboratorio de Magnetismo e Nanotecnoloxía, Instituto de Investigacións Tecnnolóxicas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, España.

<sup>2</sup> Departamento de Química Física, Facultade de Química & Laboratorio de Magnetismo e Nanotecnoloxía, Instituto de Investigacións Tecnnolóxicas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, España.

<sup>3</sup> Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.

Figure S1: FTIR spectra of the SBA-15 matrix and the nanocomposite with higher magnetite content (HMNC) and with core-shell magnetic particles (CSNC).





