Supporting information

Zinc ion mediated synthesis of cuprous oxide crystals for non-

enzymatic glucose detection

Jian Lv^{‡a}, Chuncai Kong^{‡ab}, Xuanxuan Hu^a, Xiaojing Zhang^a, Ke Liu^c, Shengchun Yang^{ab}, Jinglei Bi^a, Xiaoyan Liu^a, Ge Meng^d, Jianhui Li^e, Zhimao Yang^{*ab} and Sen Yang^{*ab}

^a School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

^b Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi'an Jiaotong University Suzhou Academy, Suzhou 21500, China

^c Hubei Key Laboratory of Advanced Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China

^d School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

^e Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

Sample	Ratio of	CuCl ₂	ZnCl ₂	Deionized	NaOH	AA
name	$Zn^{2+}: Cu^{2+}$	(0.1 M)/ ml	(0.1 M)/ml	water/ml	(0.4 M)/ml	(0.1 M)/ml
C-Cu ₂ O	0	1	0	43	1	5
P-Cu ₂ O	1:4	1	0.25	42.75	1	5
H-Cu ₂ O	1:2	1	0.5	42.5	1	5

Table s1. The required reagents for different Cu₂O samples

Figure s1. Size distributions of different Cu₂O: (a) C-Cu₂O, (b) P-Cu₂O and (c) H-Cu₂O.

Table s2. Morphological and surface area characteristics of the different samples

Sample	Morphology	Diameter (nm)	Surface area (m ² g ⁻¹)
C-Cu ₂ O	Concave cube-like	304 ± 21	5.487
P-Cu ₂ O	Porous	326 ± 23	8.397
H-Cu ₂ O	Hierarchical	309 ± 30	49.577

Figure s2. CVs of three different three electrodes with the increase of the concentration of glucose from 0 to 5 mM in 0.1 M NaOH solution at the scan rate of 50 mV.s⁻¹: (a) the C-Cu₂O/Nafion/GCE electrode, (b) P-Cu₂O/Nafion/GCE electrode and H-Cu₂O/Nafion/GCE electrode.

Figure s3. The amperometric responses of three electrodes at low concentration of glucose: (a) the C-Cu₂O/Nafion/GCE electrode, (b) P-Cu₂O/Nafion/GCE electrode and (c) H-Cu₂O/Nafion/GCE electrode.

Figure s4. Amperometric responses of three electrodes for 0.1 mM glucose in 0.1 mM NaOH at +0.55 V over a long running time of 2000 s :(a) the C-Cu₂O/Nafion/GCE electrode, (b) P-Cu₂O/Nafion/GCE electrode and (c) H-Cu₂O/Nafion/GCE electrode. (d), (e) and (f) corresponding response times of three electrodes.

Figure s5. The reuse stability of three types of Cu_2O electrodes towards 0.1 mM glucose in 0.1 M NaOH: (a) the C-Cu₂O/Nafion/GCE electrode, (b) P-Cu₂O/Nafion/GCE electrode and (c) H-Cu₂O/Nafion/GCE electrode