Supporting Information

NIR Light-Activated Dual-Modality Cancer Therapy Mediated by

Photochemical Internalization of Porous Nanocarriers with Tethered

Lipid Bilayer

Junjie Liu,^a Didem Şen Karaman,^b Jixi Zhang,*^a Jessica M. Rosenholm,^b Xingming Guo^a and Kaiyong Cai*^a

a. Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China. E-mail: jixizhang@cqu.edu.cn, kaiyong_cai@cqu.edu.cn.

b. Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku 20520, Finland.

Scheme S1 (A) Reaction for synthesizing NHS activated DOPE lipid by conjugation between DOPE and coupling agent DSC. Molecular structures of DOPC (B) and IR-780 iodide (C).

Fig. S1 Excitation and emission spectra of MSN-PEI-calcein@tLB-IR780.

Fig. S2 (A) Representative FACS analysis image show the calcein-positive percentage of MCF-7 cells treated with free calcein, MSN-PEI-calcein and MSN-PEI-calcein@tLB for 2 and 4 h, respectively, where MCF-7 cells without treatment act as control. **(B)** Quantitative mean fluorescence intensity (MFI) analysis after cells with different treatments for 2 and 4 h.

Time (hours)

4

2

Fig. S3 Detection of ROS production. Relative DCF fluorescence intensity after cells treated with free IR-780 (with irradiation), MSN@tLB-IR780 (with or without irradiation) compare to control group. The control group was performed that cells without any treatment. Irradiation condition: the cells were exposed to 808 nm laser (1.2 W/cm²) for 10 min.

Fig. S4 Cytotoxicity of formulations with different concentrations on MCF-7 cells in dark.