Supporting Information

Stable, polyvalent aptamer-conjugated near infrared fluorescent nanocomposite for high-performance cancer cell-targeted imaging and therapy

Yan-Jun Zhu^{a,b,c,} Wen-Jing Li^{a,d,} Zhang-Yong Hong^{a,d,} An-Na Tang^{a,b,c}, De-Ming Kong^{a,b,c,*}

^a State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin,

300071, P R China

^b Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P R China

^c Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin),

Tianjin, 300071, P R China

^d College of Life Science, Nankai University, Tianjin, 300071, P R China

* Corresponding authors: Email addresses: kongdem@nankai.edu.cn (D.-M. Kong)

1. Materials and reagents

DNA oligonucleotides (Table S1) were synthesized and purified by Sangon Biotech. Co. Ltd (Shanghai, China). The concentrations of the oligonucleotides were represented as single-stranded concentrations, which were determined by measuring the absorbance at 260 nm. The molar extinction coefficient was determined using a neighbor approximation (http://www.idtdan.com/analyzer/Applications/ nearest OligoAnalyzer). AgNO₃ was obtained from Alfa Aesar Corporation. Sodium borohydride (NaBH₄), NaH₂PO₄ and Na₂HPO₄ were purchased from Heowns Biochem Technologies. LLC. (Tianjin, China). Hydrogen tetrachloroaurate(III) (HAuCl₄•4H₂O, 99.99%), Trisodium citrate ($C_6H_5Na_3O_7 \cdot 2H_2O$) were purchased from China National Pharmaceutical Group Corporation (Shanghai, China). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was all obtained from Sigma-Aldrich (St. Louis, MO, USA). Deoxyribonucleases I (DNase I) was obtained from New England Biolabs Beijing Ltd. Thioflavin T (3,6-dimethyl-2-(4-dimethylaminophenyl)benzothiazolium cation, ThT) was obtained from Sigma-Aldrich. 4',6-diamidino-2phenylindole (DAPI) was obtained from Beyotime Institute of Biotechnology (Shanghai, China). Deionized and sterilized water (resistance > 18 M Ω /cm) was used throughout the experiments. All of the chemicals were of analytical grade and used without further purification.

Oligonucleotides	Sequence (5′→3′) ^{a,b}	Probe preparation
aDNA1	HS- AAAAAAAAAAAAAAAA <u>GAGCAT</u> TGGTGGTGGTGGTGGTGGTG GTGGTGG	AuNP@(AS1411-AgNCs) _n AuNP@(AS1411) _n
aDNA-control	HS- AAAAAAAAAAAAAAA <u>GAGCAT</u> T	AuNP@(AgNCs) _n
aDNA1'	AAAAAAAAAAAAAAA <u>GAGCAT</u> TGGTGGTGGTGGTGGTGGTG GTGGTGG	AS1411-AgNCs
tDNA1	CCCCCCCCCCCCCCATGCTCAACTCTT AGGCT	AuNP@(AS1411-AgNCs) _n ($\lambda_{em} = 660 \text{ nm}$)
tDNA2	CCCACCCACCCGCCC <u>ATGCTCAACTC</u> <u>TTAGGCT</u>	AuNP@ $(AS1411-AgNCs)_n$ ($\lambda_{em} = 760 \text{ nm}$) AS1411- AgNCs
tDNA3	CCCACCCACCCGCCC	AgNCs ($\lambda_{em} = 760 \text{ nm}$)

Table S1. The oligonucleotides used in this work

^a The red bases represent AS1411 aptamer sequence.

^b The bold and underlined bases indicate the complementary bases used for assembly of DNAtemplated AgNCs on AuNPs.

2. Dynamic light scattering (DLS) analysis

Figure S1. DLS characterization of the size distribution of AuNPs, AuNP@ $(AS1411)_n$, and AuNP@ $(AS1411-AgNCs)_n$.

3. DNA density on AuNP surface

The aDNA1 strands modified on 1 nM AuNPs were liberated into solution by mercaptoethanol, the liberated DNA strands were determined by using Thioflavin T (ThT, 10 μ M) as the fluorescent probe. Average number of aDNA1 per AuNP was calculated as:

$$\frac{[aDNA1 \text{ on } AuNP]}{[AuNP]} = \frac{(14.44 + 27.215)/0.398}{1} = 105$$
 (aDNA1/AuNP).

Since each aDNA1 has one AS1411 unit, the AS1411 density on Au nanoparticle was also 105 AS1411/AuNP.

Figure S2. Determination of DNA density loaded on AuNP surface. (a) aDNA1 concentration-dependent changes of ThT fluorescence intensity at 425 nm; (b) fluorescence spectrum of ThT after incubation with the aDNA1 liberated from AuNPs.

The error bars represent the standard deviation of three repetitive measurements.

4. HRTEM of AuNP@(AS1411-AgNCs)_n.

Figure S3. HRTEM of AuNP@(AS1411-AgNCs)_n.

5. Gel electrophoresis characterization of the assembly between DNA-templated AgNCs and DNA-modified AuNPs

Figure S4. Agarose gel electrophoresis image of DNA-modified AuNPs before and after assembling with DNA-templated AgNCs.

6. Confocal microscopy imaging of live cells

Figure S5. Confocal fluorescence microscopy images of NIH-3T3 and HeLa cells treated with AgNCs (200 nM) or AS1411-AgNCs (200 nM) for 3h. Scale bar = $25 \mu m$

7. DOX loading in AuNP@(AS1411-AgNCs)_n

Figure S6. DOX loading in AuNP@(AS1411-AgNCs)_{n.} (a) The fluorescence signals given the mixtures of 2 μ M DOX and different concentrations of AuNP@(AS1411-AgNCs)_n; (b) The fluorescence signal of the supernatant obtained by separating

AuNP@(AS1411-AgNCs)_n from the mixture of 2 μ M DOX and 3 nM AuNP@(AS1411-AgNCs)_n.