Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Non-invasively visualizing cell-matrix interactions in two-photon excited

supramolecular hydrogels

Wei Ji, Lingling Li, Omolola Eniola-Adefeso, Yaming Wang, Chuntai Liu and Chuanliang

Feng*

Dr. Ji, W.; Prof. Dr. Feng, C. L.,

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai

Jiaotong University, Dongchuan Road 800, 200240, Shanghai, China

E-mail: clfeng@sjtu.edu.cn

Dr. Li, L. L.

Instrumental Analysis Center, Shanghai Jiaotong University, Dongchuan Road 800, 200240, Shanghai,

China

Prof. Dr. Eniola-Adefeso, O.

Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109 USA

Prof. Dr. Wang, Y. M.; Prof. Dr. Liu, C. T.

National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou

University, China

KEYWORDS: Coumarin, self-assembly, hydrogels, two-photon, cell imaging

Contents:

1. General Information	S2	
2. Experimental Procedures		S2
3. Additional Experimental Data and Figures		S4
3.1 Gelation properties of $G_1 - G_{14}$.		S4
3.2 Photographs of the hydrogels self-assembled from G_1 –	G ₁₄ .	S6
3.3 Rheological properties of hydrogels G_1 - G_3 .		S6
3.4 The assembly ability of G_1 - G_3 in water.		S7
3.5 Crystal and experimental data of G_{2} .		S7
3.6 Crystal and experimental data of G_3 .		S9
3.7 Power XRD patterns of crystal and xerogel from hydrog	gelators G_2 and G_3 .	S12
3.8 Fluorescence spectra of hydrogelators G_1 - G_3 .		S13
3.9 Fluorescent images of the nanofibers self-assembled fro	m G ₂ , G ₃ .	S13
3.10 Fluorescent images of A549 cells cultured on G_1 hydro	ogels films.	S14
3.11 Cell viability of A549 cells incubated with hydrogelate	ors G_1 - G_3 .	S14
3.12 Two-photon excited fluorescent images of A549 cells	cultured in 3D G_1 hydrogels.	S15
4. Synthesis and Characterizations	S17	

1. General Information

Chemical reagents and solvents were purchased from Aladdin and used without further purification. ¹H NMR and ¹³C NMR were obtained on a Bruker Advance III 400 Instrument operating at 400 MHz. HRMS were recorded on a Water Q-Tof Mass Instrument. Fluorescence images were taken on a Olympus IX73 microscope and a two photon microscope (A1RMP, Nikon, Tokyo, Japan).

2. Experimental Procedures

SEM: Samples were prepared by depositing dilute solutions (approximately 0.5 mg/ml) of gelators on silicon wafer, freeze dried overnight, and sprayed with a thin gold layer. SEM images were taken on a FEI QUANTA 250 microscope.

Single-photon and two-photon fluorescence microscope: Samples were prepared by placing 200 μ L of flocculent hydrogels on a glass slide, washed with deionized water for three times, and then freeze dried

overnight. Fluorescence images were taken on a Olympus IX73 microscope and a two photon microscope (A1RMP, Nikon, Tokyo, Japan).

UV-Vis absorption: The solution $(2 \times 10^{-5} \text{ mol/L})$ of G₁-G₃ were tested using instrument of Lambda 20 from Perkin Elmer, Inc., USA, respectively.

Fluorescence spectra: The solution $(2 \times 10^{-5} \text{ mol/L})$ of G₁-G₃ were tested using LS 50B from Perkin Elmer, Inc., USA, respectively.

Preparation of single crystals G_2 - G_3 : Crystals suitable for X-ray diffraction was obtained by slow evaporation in n-hexane/tetrahydrofuran/dichloromethane (v/v/v 1:1:1) and n-hexane/tetra-hydrofuran (v/v 1:1) solution at room temperature for G_2 and G_3 , respectively.

Single crystal X-ray diffraction: Single-crystal data were collected on a Bruker SMART Apex II CCDbased X-ray diffractometer with Mo-Karadiation ($\lambda = 0.71073$ Å) at 293 K. The empirical absorption correction was applied by SADABS program (G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data; University of Göttingen, Göttingen, Germany, 1996). The structure was solved using direct method, and refined by full-matrix least-squares on F2 (G. M. Sheldrick, SHELXTL97, program for crystal structure refinement, University of Göttingen, Germany, 1997).

X-ray powder diffraction (PXRD): Xerogels and crystals of G_1 - G_2 were tested using a D8 Advance instrument from Bruker-AXS Company.

Rheology measurements: The rheological properties of hydrogels G_1 - G_3 were measured with a Rotary Rheometer (Gemini HRnano). The dynamic frequency sweep measurements were performed using a sinusoidal shear strain of constant peak amplitude (0.01%) over a range of frequencies (0.1-100 rads⁻¹) at 25°C.

3. Additional Experimental Data and Figures

3.1 Gelation properties of $G_1 - G_{14}$.

For 7-substituted coumarin-derived gelators by pyridine (G_4 - G_5 , G_7 - G_8 , G_{10} - G_{11} , G_{13} - G_{14}), they could not form hydrogels in water/DMSO (99.5%w/0.5%w) solution at room temperature (RT) by "solventmediated"method. While, they can form gels in water/DMSO (50%w/50%w) under heating (over 50°C) and cooling by "temperature-mediated" method (Figure 1 and S1). The result suggested that gelation property has no direct relationship with 4-methyl coumarin or 4-hydrogen coumarin in those chemical structures. However, if substitue pyridine group was replaced by benzene (G_1 , G_2), the gelation property was closely related with 4-methyl coumarin or 4-hydrogen coumarin. G_1 could form hydrogels in water/DMSO (99.5%w/0.5%w) at room temperature (RT) by "solvent-mediated"method (Figure 1 and S1), while, G_2 only self-assembled into hydrogel in water/DMSO (50%w/50%w) under heating and cooling by "temperature-mediated" method.

For 6-substituted coumarin-derived gelators by pyridine (G_6 , G_9 , G_{12}), all of them could self-assemble into hydrogels in water/DMSO (95.5%w/0.5%w) at room temperature (RT) by "solvent-mediated" method. While, substitute benzene group based gelator (G_3) only formed gel in water/DMSO (50%w/50%w) under heating and cooling by "temperature-mediated" method. Clearly, pyrindine or benzene has influence on the self-assembly ability of gelators. If pyridine or benzene was replaced by other analogous groups (NG₁, NG₂), they could not form hydrogels either in water/DMSO (99.5%w/0.5%w) or in water/DMSO (50%w/50%w) solution, demonstrating the important role of pyridine or benzene groups for this type of gelators. Thus, G₁, G₆, G₉, and G₁₂ should have stronger self-assembly ability in aqueous solution compared with other gelators, which may be ascribed to the different chemical structures of gelators.

Figure S1 Schematic demonstration of gelators self-assembly in water/DMSO (99.5%w/0.5%w or 50%w/50%w) through C-H-O bonds. G_1 , G_6 , G_9 , and G_{12} could self-assemble in aqueous solution under room temperature (final DMSO concentration of 0.5%). G_2 - G_5 , G_7 - G_8 , G_{10} - G_{11} , G_{13} - G_{14} only self-assemble into gels in water/DMSO (50%w/50%w) by heating and cooling. NG₁ and NG₂ could not form hydrogels in water/DMSO (99.5%w/0.5%w or 50%w/50%w) solution.

3.2 Photographs of the hydrogels self-assembled from G_1 – G_{14} .

Figure S2 Photographs of the hydrogels from $G_1 - G_{14}$ before and after UV light irradiation (365 nm).

3.3 Rheological properties of hydrogels G1-G3.

Figure S3 Rheological measurement of frequency sweep for hydrogels (a): G_1 ; (b): G_2 ; (c): G_3 at a strain of 0.01% over a range of 0.1-100 rads⁻¹.

3.4 The assembly ability of G_1 - G_3 in water.

Figure S4 Optical microscope images of G_1 - G_3 assembly in water. The result suggested that G_1 have the strongest capability of self-assembling into fibers but G_2 and G_3 formed crystals. Scale bar = 20 μ m.

3.5 Crystal and experimental data of G₂.

Empirical formula	$C_{16} H_{10} O_4$
Formula weight	266.24
Temperature	298(2) K
Wavelength	1.54178 Å
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	$a = 6.6490(5) \text{ Å} \alpha = 90^{\circ}$
	$b = 28.779(2) \text{ Å} \beta = 115.909(3)^{\circ}$
	$c = 7.2200(6) \text{ Å} \gamma = 90^{\circ}$
Volume	1242.70(16) Å ³
Z, Calculated density	4, 1.423 Mg/m ³
Absorption coefficient	0.857 mm ⁻¹
F(000)	552
Crystal size	0.20 x 0.10 x 0.08 mm
Theta range for data collection	3.07 to 68.41°
Limiting indices	-7<=h<=8, -34<=k<=34, -8<=l<=8
Reflections collected / unique	11930 / 2266 [R(int) = 0.0235]
Completeness to theta = 25.242	99.4 %
Max. and min. transmission	0.9346 and 0.8474
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2266 / 0 / 182
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0355, $wR2 = 0.1046$
R indices (all data)	R1 = 0.0423, $wR2 = 0.1110$
Extinction coefficient	0.0060(9)
Largest diff. peak and hole	0.187 and -0.133 e. Å ⁻³

Table S1A Crystal data and structure refinement for G_2 .

Table S1B Bond lengths [Å] and angles [deg] for G_2 .

O(1)-C(7)	1.1978(17)	
O(2)-C(7)	1.3589(16)	
O(2)-C(8)	1.3938(15)	
O(3)-C(10)	1.3788(14)	
O(3)-C(14)	1.3827(16)	
O(4)-C(14)	1.2064(16)	

C(1) $C(2)$	1 202(2)
C(1)- $C(2)$	1.302(2) 1.286(2)
C(1)-C(6)	1.380(2)
C(1)-C(7)	1.4816(19)
C(2)-C(3)	1.381(2)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.366(3)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.365(3)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.393(2)
C(5)-H(5A)	0.9300
C(6)-H(6A)	0.9300
C(8)-C(9)	1.3772(18)
C(8)-C(13)	1.3927(18)
C(9)-C(10)	1.3805(18)
C(9)-H(9A)	0.9300
C(10)-C(11)	1 3920(16)
C(11)-C(12)	1.3920(10) 1.4001(18)
C(11) - C(12)	1,4001(10) 1,4332(17)
C(11) - C(10) C(12) C(12)	1.732(17) 1.3720(10)
C(12) - C(13)	1.3739(19)
C(12)-H(12A)	0.9300
C(13)-H(13A)	0.9300
C(14)-C(15)	1.4428(19)
C(15)-C(16)	1.3329(19)
C(15)-H(15A)	0.9300
C(16)-H(16A)	0.9300
C(7) $O(2)$ $C(8)$	122 (7(11)
C(10) O(2) C(14)	122.07(11) 121.07(10)
C(10)-O(3)-C(14)	121.97(10)
C(2)-C(1)-C(6)	119.46(14)
C(2)-C(1)-C(7)	122.54(13)
C(6)-C(1)-C(7)	118.00(14)
C(3)-C(2)-C(1)	120.13(16)
C(3)-C(2)-H(2A)	119.9
C(1)-C(2)-H(2A)	119.9
C(4)-C(3)-C(2)	120.49(19)
C(4)-C(3)-H(3A)	119.8
$C(2)_{-}C(3)_{-}H(3A)$	119.8
C(2) - C(3) - H(3A) C(5) C(4) C(2)	110 06(16)
C(5) = C(4) = C(5)	120.0
C(3)-C(4)-H(4A)	120.0
C(3)-C(4)-H(4A)	120.0
C(4)-C(5)-C(6)	120.61(17)
C(4)-C(5)-H(5A)	119.7
C(6)-C(5)-H(5A)	119.7
C(1)-C(6)-C(5)	119.35(17)
C(1)-C(6)-H(6A)	120.3
C(5)-C(6)-H(6A)	120.3
O(1)-C(7)-O(2)	123.57(13)
O(1)-C(7)-C(1)	125.74(13)
O(2)-C(7)-C(1)	110.69(12)
C(9)-C(8)-C(13)	12176(12)
C(0) C(2) O(2)	121.70(12) 124.24(11)
C(3) - C(0) - O(2)	124.24(11) 112.00(11)
C(13)-C(3)-O(2)	113.90(11) 117.40(11)
C(8) - C(9) - C(10)	117.49(11)
C(8)-C(9)-H(9A)	121.3
C(10)-C(9)-H(9A)	121.3
O(3)-C(10)-C(9)	116.32(10)
O(3)-C(10)-C(11)	120.61(11)

C(9)-C(10)-C(11)	123.07(12)
C(10)-C(11)-C(12)	117.36(12)
C(10)-C(11)-C(16)	118.11(11)
C(12)-C(11)-C(16)	124.53(11)
C(13)-C(12)-C(11)	121.00(11)
C(13)-C(12)-H(12A)	119.5
C(11)-C(12)-H(12A)	119.5
C(12)-C(13)-C(8)	119.29(12)
C(12)-C(13)-H(13A)	120.4
C(8)-C(13)-H(13A)	120.4
O(4)-C(14)-O(3)	116.23(13)
O(4)-C(14)-C(15)	126.75(13)
O(3)-C(14)-C(15)	117.02(11)
C(16)-C(15)-C(14)	121.56(12)
C(16)-C(15)-H(15A)	119.2
C(14)-C(15)-H(15A)	119.2
C(15)-C(16)-C(11)	120.69(12)
C(15)-C(16)-H(16A)	119.7
C(11)-C(16)-H(16A)	119.7

Table S1C Geometrical parameters of hydrogen bonds in crystal G₂.

D-H…A	D-H(Å)	H…A(Å)	D…A(Å)	D-H…A(deg)	Symmetry-for-A	
Intra C2-H2AO2	0.93	2.40	2.7136	100		
C4-H4AO4	0.93	2.49	3.2719	142	1-x,1/2+y,3/2-z	
Intra C9-H9AO1	0.93	2.39	2.8244	108		
C12-H12AO3	0.93	2.53	3.4378	166	-1+x,y,z	
C16-H16AO4	0.93	2.47	3.3583	160	-1+x,y,z	
						1

:: No Classic Hydrogen Bonds Found

Table S1D Short Ring-Interactions with Cg-Cg Distances in crystal G₂.

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom				
Cg(I) = Plane number I				
Cg-Cg = Distance between ring Centroids (Ang	(.)			
Cg(I)	Cg-Cg			
$Cg(1) [1] \rightarrow Cg(1)$	3.8101			
$Cg(1) [1] \rightarrow Cg(3)$	3.6290			
$Cg(2) [1] \rightarrow Cg(2)$	3.9568			
$Cg(3) [1] \rightarrow Cg(1)$	3.6290			
$Cg(3) [1] \rightarrow Cg(3)$	4.8155			
Min or Max	3.629			

3.6 Crystal and experimental data of G₃.

Self-assembly mechanism: Compound G_3 also gave crystals suitable for X-ray diffraction analysis upon crystallization from n-hexane/tetrahydrofuran solution with the same method to G_2 . Colorless single crystals of G_3 belonged to a monoclinic space group P c and no classic hydrogen bonds or solvent molecules were found in self-assembly (Table S2A, S2B, S2C, for crystallographic details). It was found that the main driving forces in the self-assembly process are two types of C-H…O intermolecular hydrogen bonds. Firstly, head-tail fashion of one-dimension (1D) supramolecular polymer was formed through the intermolecular hydrogen bonds between the C=O of lactone and a hydrogen of benzene (C5-H5A…O4), which have the a bond length of 2.59 Å (H5A…O4). Then 1D supramolecular polymeric strands entangled with each other to form 3D crystal networks through intermolecular hydrogen bonds (C10-H10A…O1)

between the C=O of benzene and the 8-hydrogen atom of coumarin with the bond length of 2.51 Å (H10A…O1) (Table S2C). In addition, structure analysis of G_3 shows that there were no π - π stacking occurred in the molecular self-assemby (the minimum Cg-Cg distances are > 4.0 Å, Table S2D).

Table S2A Crystal data and structure refinement for G_3 .

Empirical formula	$C_{17} H_{12} O_4$
Formula weight	280.27
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system, space group	Monoclinic, P c
Unit cell dimensions	$a = 13.1267(4) \text{ Å} \alpha = 90^{\circ}$
	$b = 3.86890(10) \text{ Å} \beta = 93.9450(10)^{\circ}$
	$c = 12.7810(4) \text{ Å} \gamma = 90^{\circ}$
Volume	647.56(3) Å ³
Z, Calculated density	2, 1.437 Mg/m^3
Absorption coefficient	0.850 mm ⁻¹
F(000)	292
Crystal size	0.20 x 0.10 x 0.05 mm
Theta range for data collection	3.37 to 68.13°
Limiting indices	-15<=h<=15, -4<=k<=4, -15<=l<=15
Reflections collected / unique	7022 / 2370 [R(int) = 0.0240]
Completeness to theta = 25.242	99.3 %
Max. and min. transmission	0.933 and 0.847
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2272 / 2 / 190
Goodness-of-fit on F ²	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0371, $wR2 = 0.1058$
R indices (all data)	R1 = 0.0372, wR2 = 0.1060
Absolute structure parameter	0.02(18)
Largest diff. peak and hole	0.350 and -0.429 e. Å ⁻³

Table S2B Bond lengths [Å] and angles [deg] for G_3 .

-

O(1)-C(7)	1.203(3)		
O(2)-C(7)	1.369(3)		
O(2)-C(8)	1.404(2)		
O(3)-C(11)	1.381(2)		
O(3)-C(16)	1.381(2)		
O(4)-C(16)	1.208(2)		
C(1)-C(6)	1.394(3)		
C(1)-C(2)	1.397(3)		
C(1)-C(7)	1.484(3)		

C(2)-C(3)	1.389(3)
C(2)-H(2A)	0.9500
C(3)-C(4)	1.382(3)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.395(3)
C(4)-H(4A)	0.9500
C(5)-C(6)	1.389(3)
C(5)-H(5A)	0.9500
C(6)-H(6A)	0.9500
C(8)-C(13)	1.374(3)
C(8)-C(9)	1 391(3)
C(9) - C(10)	1.387(3)
C(9)-H(9A)	0.9500
C(10)-C(11)	1 388(3)
C(10) - H(10A)	0.9500
C(11)-C(12)	1 396(3)
C(12)-C(13)	1 406(3)
C(12) - C(14)	1 455(3)
C(12) = C(11) C(13) = H(13A)	0.9500
C(14)-C(15)	1 347(3)
C(14) - C(17)	1 498(3)
C(15)-C(16)	1 447(3)
C(15) = C(10) C(15) = H(15A)	0.9500
C(17) - H(17A)	0.9500
C(17)-H(17R) C(17)-H(17R)	0.9800
C(17)-H(17C)	0.5000
	0.7000
C(7) - O(2) - C(8)	119 (02(15)
C(1)-O(2)-C(0) C(11)-O(3)-C(16)	121 71(15)
C(1)-O(3)-C(10)	121.71(15) 110 03(18)
C(0)-C(1)-C(2)	117.95(10) 117.08(17)
C(0)-C(1)-C(7)	122.08(17)
C(2) - C(1) - C(1)	122.00(17) 110 0(2)
C(3) - C(2) - C(1) C(3) - C(2) - H(2A)	119.9(2)
C(3)-C(2)-H(2A)	120.1
$C(1) - C(2) - \Pi(2A)$ C(4) - C(3) - C(2)	120.1 120.0(2)
C(4) - C(3) - C(2) C(4) - C(3) - H(3A)	120.0(2)
$C(4) - C(3) - \Pi(3A)$	120.0
$C(2) - C(3) - \Pi(3A)$	120.0 120.56(10)
C(3) - C(4) - C(3)	120.30(19)
C(5) - C(4) - H(4A)	119.7
C(5) - C(4) - H(4A)	119.7
C(0) - C(3) - C(4)	119.0(2)
C(6)-C(5)-H(5A)	120.2
C(4)-C(5)-H(5A)	120.2
C(5)-C(6)-C(1)	120.0(2)
C(5)-C(6)-H(6A)	120.0
C(1)- $C(6)$ -H(6A)	120.0
O(1)-O(2)	123.21(18)
O(1)-C(7)-C(1)	125.50(19)
O(2)-O(7)-O(1)	111.29(10)
C(13)-C(8)-C(9)	122.0/(18)
C(13)-C(8)-O(2)	122.09(18)
C(9)-C(8)-O(2)	115.64(17)
C(10)-C(9)-C(8)	119.40(18)
C(10)-C(9)-H(9A)	120.3
C(8)-C(9)-H(9A)	120.3
C(9)-C(10)-C(11)	118.70(18)
C(9)-C(10)-H(10A)	120.6

C(11)-C(10)-H(10A)	120.6	
O(3)-C(11)-C(10)	116.02(17)	
O(3)-C(11)-C(12)	121.56(16)	
C(10)-C(11)-C(12)	122.42(18)	
C(11)-C(12)-C(13)	118.03(17)	
C(11)-C(12)-C(14)	118.04(18)	
C(13)-C(12)-C(14)	123.93(18)	
C(8)-C(13)-C(12)	119.38(18)	
C(8)-C(13)-H(13A)	120.3	
C(12)-C(13)-H(13A)	120.3	
C(15)-C(14)-C(12)	118.76(18)	
C(15)-C(14)-C(17)	121.90(17)	
C(12)-C(14)-C(17)	119.34(18)	
C(14)-C(15)-C(16)	123.09(18)	
C(14)-C(15)-H(15A)	118.5	
С(16)-С(15)-Н(15А)	118.5	
O(4)-C(16)-O(3)	116.97(18)	
O(4)-C(16)-C(15)	126.34(19)	
O(3)-C(16)-C(15)	116.69(17)	
С(14)-С(17)-Н(17А)	109.5	
C(14)-C(17)-H(17B)	109.5	
H(17A)-C(17)-H(17B)	109.5	
C(14)-C(17)-H(17C)	109.5	
H(17A)-C(17)-H(17C)	109.5	
H(17B)-C(17)-H(17C)	109.5	

Table S2C Geometrical parameters of hydrogen bonds in crystal G_3 .

D-H···A	D-H(Å)	H…A(Å)	D…A(Å)	D-H…A(deg)	Symmetry-for-A
C5-H5AO4	0.95	2.59	3.5170	164	-1+x,-1+y,z
C10-H10AO1	0.95	2.51	3.1452	124	x,2-y,-1/2+z

:: No Classic Hydrogen Bonds Found

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom						
Cg(I) = Plane number I						
Cg-Cg = Distance between ring Centroids (Ang.)						
Cg(I)	Cg-Cg					
$Cg(1) [1] \rightarrow Cg(3)$	4.6556					
$Cg(3) [1] \rightarrow Cg(1)$	4.4618					
Min or Max	4.462					

Figure S5 Power XRD patterns of crystals and xerogels self-assembled from hydrogelators a) G_2 and b) G_3 . Here, PXRD patterns of two states could be essentially same with each other, implying the same packing modes in both single crystal and xerogel state.

3.8 Fluorescence spectra of hydrogelators G₁-G₃.

Figure S6 a) The fluorescent emission spectra of G_1 - G_3 nanofibrous solution, respectively. b) Fluorescence spectra of nanofibrous solution with increasing G_1 concentration.

3.9 Fluorescent images of the nanofibers self-assembled from G₂, G₃.

Figure S7. SEM image of G_2 and G_3 nanofibers. Scale bar = 5 µm. Single-photon fluorescent images of G_2 and G_3 nanofibers under UV excitation. Scale bar = 300 µm. Two-photon fluorescent images of G_2 and G_3 nanofibers under NIR excitation. Scale bar = 50 µm.

3.10 Fluorescent images of A549 cells cultured on G₁ hydrogels films.

Figure S8. 2D cell-substrate imaging blue nanofibers under the excitation of a) UV light at the wavelength of 360-370 nm and b) NIR light at the wavelength of 750 nm. Red or yellow A549 cells are excited at the wavelength of 530-550 nm or 544 nm. The images are overlay of the nanofibers and cells at the same sample site. Scale bar = $50 \mu m$.

3.11 Cell viability of A549 cells incubated with hydrogelators G₁-G_{3.}

Figure S9. After culturing human lung carcinoma (A549) cells in the presence of hydrogelators G_1 , G_2 , or G_3 (the concentration: 20-200 μ M) for 24 hours, over 90% (by CCK-8 assays) of survival cells suggested the good biocompatibility for all of them.

3.12 Two-photon excited fluorescent images of A549 cells cultured in 3D G₁ hydrogels.

Figure S10. above) Volume view of 3D cell-substrate imaging. below) Slices view of the overlaid images of both nanofibers and A549 cells at the same depths. The blue nanofibers are excited by NIR laser at the wavelength of 750 nm. Yellow cells are excited at the wavelength of 544 nm. Scale bar = $20 \mu m$.

Figure S11. The simultaneous confocal fluorescent images of cells and nanofibers in the same scanning transverse section after 8 h culture and the dynamic imaging of cells migrating through 3D nanofibrous structures from 0 to 90 min. Scale bar = $10 \mu m$.

Entry	Molecular	Gelation	Temperature	Cell	Entry	Molecular	Gelation	Temperature	Cell
	Structure	solvent	(°C)	imaging		Structure	solvent	(°C)	imaging
G1		pBS(0.5%D MSO)	RT ^a	2D/3D	G9		PBS(0.5%D MSO)	RT ^a	2D/3D
G₂		9 PBS(50%D MSO)	88 ^b	2D	G ₁₀	Jiolito	PBS(50%DM SO)	93 ^b	2D
G₃		PBS(50%D MSO)	78 ^b	2D	G ₁₁		PBS(50%DM SO)	95 ^b	2D
G₄		9BS(50%D MSO)	85 ^b	2D	G ₁₂		PBS(0.5%D MSO)	RT ^a	2D/3D
G₅		9 PBS(50%D MSO)	82 ^b	2D	G ₁₃		Methanol	45 ^b	2D
G ₆		PBS(0.5%D MSO)	RT ^a	2D/3D	G ₁₄		Methanol	53 ^b	2D
G7	J.C.	9 PBS(50%D MSO)	87 ^b	2D	NG ₁	("Jolooo	Non-gelator		
G ₈		PBS(50%D	92 ^b	2D	NG₂		Non-gelator		

 Table S3. Coumarin-based supramolecular platform for cell-matrix imaging.

Gel preparation methods: (a) "solvent-mediated" method; (b) "temperature-mediated" method.

4. Synthesis and Characterizations

Synthesis of G₁:

A solution of 7-hydroxy-4-methylcoumarin (1.76 g, 10 mmol) and TEA(1.50 g, 15 mmol) in CH₂Cl₂ (20 ml) was stirred at 0°C for 30 min, then a solution of benzoyl chloride (2.10 g, 15 mmol) in CH₂Cl₂(5 ml) was added dropwise. The mixture was stirred for overnight at room temperature. The resulting solution was washed three times with water (5 ml), saturated NaHCO₃ solution (5 ml). Then the organic layer was collected and dried over anhydrous Na₂SO₄. Purification with column chromatography (CH₂Cl₂:EA=5:1) gave the product (2.32 g, 83%)as a white powder. ¹H NMR (400 MHz, CDCl₃) δ =8.19(dd, J₁=1.6Hz J2=0.8Hz, 2H), 7.65(d, J=8.4Hz, 2H), 7.53(t, J₁=8.0Hz, 2H), 7.22(m, 2H), 5.28(s, 1H), 2.45(s, 3H). ¹³C NMR (400MHz, CDCl₃) δ = 164.7, 160.7, 154.5, 153.6, 152.2, 134.3, 130.5, 129.1, 129.0, 128.9, 125.7, 118.5, 118.1, 114.8, 110.8, 18.9. HRMS (ESI) calcd for C₁₇H₁₂O₄ [M+H]⁺ 280.0736; found 281.0828.

G₂-G₃ were prepared using the same procedure for G₁. Synthesis of G₂:

7-hydroxycoumarin (1.62 g, 10 mmol), benzoyl chloride (2.10 g,15 mmol) and TEA (1.50 g, 15 mmol) in CH₂Cl₂ (25 ml) yielded **G**₂ as white powder (2.12 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ =8.20(t, J=3.2Hz, 2H), 7.65-7.71(m, 2H), 7.53(t, J=8.0Hz, 3H), 7.25(s, 1H), 7.20(m, 1H), 6.41(d, J=9.6Hz, 1H). ¹³C NMR (400MHz, CDCl₃) δ = 164.7, 160.5, 154.9, 153.7, 143.1, 134.3, 130.5, 128.9, 128.8, 118.8, 116.9, 116.3, 110.8. HRMS (ESI) calcd for C₁₆H₁₀O₄ [M+H]⁺ 266.0579; found 267.0671.

Synthesis of G₃:

6-Hydroxy-4-methylcoumarin (1.76 g, 10 mmol), benzoyl chloride (2.10 g, 15 mmol) and TEA(1.50 g, 15 mmol) in CH₂Cl₂ (25 ml) yielded **G₃** as white powder (2.46 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ =8.19(s, 2H), 7.65(d, J=7.6Hz, 1H), 7.53(t, J=8.0Hz, 2H), 7.46(t, J₁=0.8Hz, 1H), 7.38(d, J=0.8Hz, 1H), 7.25(s, 1H), 6.33(s, 1H), 2.42(s, 3H). ¹³C NMR (400MHz, CDCl₃) δ = 165.1, 160.3, 151.6, 150.9, 146.8, 133.9, 130.1, 130.0, 128.8, 128.6, 128.3, 125.3, 120.5, 118.0, 117.3, 115.6, 18.6. HRMS (ESI) calcd for C₁₇H₁₂O₄ [M+H]⁺ 280.0736; found 281.0812.

Synthesis of G₄:

4-Methylumbelliferone (1.76 g, 10 mmol), 2-Picolinic Acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20 ml) yielded **G**₄ as white powder (2.44 g, 85.01%). ¹H NMR (400 MHz, CDCl₃) δ =8.87(d, J=4.0Hz, 1H), 8.30(d, J=8.0Hz, 1H), 7.95(t, J=2.0Hz, 1H), 7.68(d, J=8.0Hz, 1H), 7.60(t, J=4.0Hz, 1H), 7.30(d, J=2.0Hz, 1H), 7.25(s, 1H), 6.30(s, 1H), 2.46(d, J=1.2Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 163.4, 160.7, 154.3, 153.4, 152.2, 150.4, 146.9, 137.6, 128.0, 126.3, 125.7, 118.4, 114.8, 110.9, 18.9. HRMS (ESI) calcd for C₁₆H₁₂NO₄ 282.0766 [M+H]⁺; found 282.0771. **Synthesis of G₅:**

To a solution of 7-hydroxycoumarin (1.62 g, 10 mmol), 2-Picolinic Acid (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20 ml) was added EDCI (2.10 g, 11 mmol). The mixture was stirred for 2 hours at room temperature. The resulting solution was washed three times with water (5 ml), saturated NaHCO₃ solution (5 ml). Then the organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give the product **G**₅ as white powder (2.45 g, 91.76%). ¹H NMR (400 MHz, CDCl₃) δ =8.87(d, J=4.0Hz, 1H), 8.29(d, J=7.6Hz, 1H), 7.95(t, J=8.0Hz, 1H), 7.72(d, J=9.6Hz, 1H), 7.60(t, J=4.0Hz, 1H), 7.55(d, J=8.4Hz, 1H), 7.3(s, 1H), 7.23(d, J=8.0Hz, 1H), 6.43(d, J=9.6Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ = 163.4, 160.4, 154.8, 153.5, 150.4, 146.9, 143.0, 137.6, 128.9, 128.0, 126.3, 118.7, 117.1, 116.4, 110.8. HRMS (ESI) calcd for C₁₅H₁₀NO₄ 268.0610 [M+H]⁺; found 268.0609.

Other gelators were prepared by using the similar above procedure. Synthesis of G_6 :

To a solution of 6-hydroxy-4-methylcoumarin (1.76 g, 10 mmol), 2-Picolinic Acid (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20ml) was added EDCI (2.10 g, 11 mmol). The mixture was stirred for 2 hours at room temperature. The resulting solution was washed three times with water (5 ml), saturated NaHCO₃ solution (5 ml). Then the organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give the product G_6 as white powder (2.50 g, 88.96%). ¹H NMR (400 MHz, CDCl₃) δ =8.84(dd, J₁=4.8Hz J₂=0.8Hz, 1H), 8.27(dd, J₁=8.0Hz J₂=0.8Hz, 1H), 7.93(td, J₁=7.6Hz J₂=1.2Hz, 1H), 7.58(m, 1H), 7.50(d, J=2.4Hz, 1H), 7.43(dd, J₁=8.8Hz J₂=2.0Hz, 1H), 7.38(d, J=8.8Hz, 1H), 6.32(s, 1H), 2.40(s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 163.9, 160.4, 151.8, 151.3, 150.2,

147.0, 146.9, 137.4, 127.8, 126.1, 125.4, 120.8, 118.2, 117.4, 115.9, 18.7. HRMS (ESI) calcd for C₁₆H₁₁NO₄ [M+H]+ 282.0766; found 282.0739. Synthesis of G₇:

4-Methylumbelliferone (1.76 g, 10 mmol), Nicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20 ml) yielded **G**₇ as white powder (2.51 g, 89.32%). ¹H NMR (400 MHz, CDCl₃) δ =9.4(s, 1H), 8.89(dd, J₁=4.8Hz J₂=1.6Hz, 1H), 8.46(d, J=8.0Hz, 1H), 7.68(d, J=8.8Hz, 1H), 7.48-7.51(m, 1H), 7.27(d, J=2.0Hz, 1H), 7.22(dd, J₁=8.8Hz J₂=2.4Hz, 1H), 6.31(d, J=1.2Hz, 1H), 2.47(d, J=1.2Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 163.5, 160.5, 154.6, 154.4, 153.0, 152.0, 151.6, 137.9, 125.8, 125.1, 123.7, 118.4, 118.2, 115.0, 110.7, 18.9. HRMS (ESI) calcd for C₁₆H₁₂NO₄ 282.0766 [M+H]⁺; found 282.0755.

Synthesis of G₈:

7-hydroxycoumarin (1.62 g, 10 mmol), Nicotinic acid(1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20 ml) yielded **G**₈ as white powder (2.35 g, 88.01%). ¹H NMR (400 MHz, CDCl₃) δ = 9.40 (d, J = 1.6 Hz, 1H), 8.89 (dd, J₁ = 4.8 Hz J₂ = 1.6Hz, 1H), 8.49 (dt, J₁ = 8.0 Hz J₂ = 1.6 Hz, 1H), 7.73 (d, J = 9.6Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.51-7.54 (m, 1H), 7.27 (d, J = 2.4 Hz, 1H), 7.20 (dd, J₁ = 8.4 Hz J₂ = 2.4 Hz, 1H), 6.44(d, J = 9.6 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ = 163.5, 160.4, 154.9, 154.6, 153.1, 151.6, 143.0, 137.9, 129.0, 125.1, 123.8, 118.5, 117.2, 116.5, 110.7. HRMS (ESI) calcd for C₁₅H₁₀NO₄ 268.0610 [M+H]⁺; found 268.0610. **Synthesis of G₉:**

6-Hydroxy-4-methylcoumarin (1.76 g, 10 mmol), Nicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20ml) yielded **G**₉ as white powder (2.43 g, 86.47%). ¹H NMR (400 MHz, CDCl₃) δ = 9.40 (d, J = 2.0 Hz, 1H), 8.88 (dd, J₁ = 4.8 Hz J₂ = 1.6 Hz, 1H), 8.45 (dt, J₁ = 8.0 Hz J₂ = 1.6 Hz, 1H), 7.50 (m, 1H), 7.47 (t, J = 1.6 Hz, 1H), 7.40 (d, J = 2.4 Hz, 2H), 6.35 (d, J = 1.2 Hz, 1H), 2.43 (d, J = 1.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 164.0, 160.3, 154.3, 151.6, 151.4, 151.3, 146.5, 137.8, 125.3, 125.2, 123.7, 120.8, 118.3, 117.3, 116.0, 18.7. HRMS (ESI) calcd for C₁₆H₁₁NO₄ [M+H]+ 282.0766; found 282.0757.

Synthesis of G₁₀:

4-Methylumbelliferone (1.76 g, 10 mmol), Isonicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20 ml) yielded **G**₁₀ as white powder (2.60 g, 90.59%). ¹H NMR (400 MHz, CDCl₃) δ = 8.89 (d, J = 6.0 Hz, 2H), 8.01 (d, J = 6.0 Hz, 2H), 7.68 (d, J = 8.8 Hz, 1H), 7.26 (d, J = 2.4 Hz, 1H), 7.20 (dd, J₁ = 8.8 Hz J₂ = 2.4 Hz, 1H), 6.31 (d, J = 1.2 Hz, 1H), 2.47 (d, J = 1.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 163.4, 160.5, 154.4, 152.9, 152.0, 151.2, 136.2, 125.9, 123.4, 118.5, 118.0, 115.0, 110.6, 18.9. HRMS (ESI) calcd for C₁₆H₁₂NO₄ 282.0766 [M+H]⁺; found 282.0764. **Synthesis of G₁₁:**

7-hydroxycoumarin (1.62 g, 10 mmol), Isonicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20 ml) yielded **G**₁₁ as white powder (2.28 g, 85.39%). ¹H NMR (400 MHz, CDCl₃) δ = 8.89 (d, J = 6.0 Hz, 2H), 8.01 (d, J = 6.0 Hz, 2H), 7.73 (d, J = 9.6 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 2.4 Hz, 1H), 7.20 (dd, J₁ = 8.4 Hz J₂ = 2.4 Hz, 1H), 6.44 (d, J = 9.6 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ =163.4, 160.4, 154.9, 153.0, 151.2, 143.0, 136.2, 129.0, 123.4, 118.4, 117.3, 116.7, 110.7. HRMS (ESI) calcd for C₁₅H₁₀NO₄ 268.0610 [M+H]⁺; found 268.0607. **Synthesis of G₁₂:**

6-Hydroxy-4-methylcoumarin (1.76 g, 10 mmol), Isonicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20ml) yielded **G**₁₂ as white powder (2.35 g, 83.62%). ¹H NMR (400 MHz, CDCl₃) δ = 8.88 (dd, J₁ = 4.4 Hz J₂ = 1.6 Hz, 2H), 8.01 (dd, J₁ = 4.4 Hz J₂ = 1.6 Hz, 2H), 7.47 (d, J = 2.4 Hz, 1H), 7.40 (m, 2H), 6.36 (d, J = 1.2 Hz, 1H), 2.44 (d, J = 1.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 163.9, 160.3, 151.6, 151.4, 151.0, 146.4, 136.3, 125.1, 123.2, 120.8, 118.2, 117.2, 116.1, 18.7. HRMS (ESI) calcd for C₁₆H₁₁NO₄ [M+H]+ 282.0766; found 282.0758. **Synthesis of G₁₃:**

7-Hydroxy-4-methylcoumarin (1.76 g, 10 mmol), 2-Chloronicotinic acid (1.57 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20ml) yielded **G**₁₃ as white powder (2.67 g, 84.76%). ¹H NMR (400 MHz, CDCl₃) δ = 8.62 (dd, J₁ = 4.8 Hz J₂ = 2.0 Hz, 1H), 8.38 (dd, J₁ = 8.0 Hz J₂ = 2.0 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.43 (m, 1H), 7.22 (m, 2H), 6.30 (s, 1H), 2.46 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 182.0, 158.8, 153.5, 153.2, 152.9, 152.4, 148.9, 141.6, 126.7, 125.3, 123.3, 118.3, 118.1, 114.0, 110.2, 18.2. HRMS (ESI) calcd for C₁₆H₁₀ClNO₄ [M+H]⁺ 316.0386; found 316.0773. **Synthesis of G₁₄:**

7-hydroxycoumarin (1.62 g, 10 mmol), (1. g, 10 mmol), EDCI (1.23 g, , 2-Chloronicotinic acid (1.57 g, 10 mmol), EDCI (1.23 g, 10mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20ml) yielded **G**₁₄ as white powder (2.13 g, 70.76%). ¹H NMR (400 MHz, CDCl₃) δ = 8.62 (dd, J₁ = 4.8 Hz J₂ = 2.0 Hz, 1H), 8.38(dd, J₁ = 8.0 Hz J₂ = 2.0 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.43 (m, 1H), 7.22 (m, 2H), 6.43 (d, J = 9.6 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ = 162.5, 160.1, 154.8, 153.8, 152.9, 149.3, 144.2, 141.9, 129.8, 125.6, 123.9, 119.1, 117.4, 116.5, 110.7. HRMS (ESI) calcd for C₁₅H₈CINO₄ [M+H]⁺ 302.0241; found 301.0220.

Synthesis of NG₁:

7-Hydroxy-4-methylcoumarin (1.76 g, 10 mmol), 2-Pyrazinecarboxylic acid (1.24 g, 10 mmol), EDCI (1.23 g, 10mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20ml) yielded NG₁ as white powder (2.05 g, 72.69%). ¹H NMR (400 MHz, CDCl₃) δ = 9.48 (d, J = 1.2 Hz, 1H), 8.88 (d, J = 2.4 Hz, 1H), 8.83 (m, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.24-7.31 (m, 2H), 6.31 (s, 1H), 3.74 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ = 162.0, 156.2, 153.7, 152.7, 150.9, 146.8, 145.2, 144.9, 143.6, 125.2, 118.3, 116.4, 114.9, 112.5, 18.9. HRMS (ESI) calcd for C₁₅H₁₀N₂O₄ [M+H]⁺ 282.0641; found 282.0635. Synthesis of NG₂:

7-hydroxycoumarin (1.62 g, 10 mmol), 2-Pyrazinecarboxylic acid (1.24 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH₂Cl₂ (20ml) yielded NG₂ as white powder (1.88 g, 70.15%). ¹H NMR (400 MHz, d-DMSO) δ = 9.44 (d, J = 1.2 Hz, 1H), 8.85 (d, J = 2.4 Hz, 1H), 8.81 (m, 1H), 7.73 (d, J = 9.6 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.24-7.30 (m, 2H), 6.42 (d, J = 9.6 Hz, 1H). ¹³C NMR (400 MHz, d-DMSO) δ = 161.8, 159.6, 154.0, 152.6, 148.7, 146.3, 145.0, 143.7, 142.2, 129.7, 118.6, 117.2, 115.9, 110.3. HRMS (ESI) calcd for C₁₄H₈N₂O₄ [M+H]⁺ 269.0580; found 269.0562.