Electronic Supplementary Material (ESI)

Understanding Desiccation Patterns of Blood Sessile Drops

Ruoyang Chen^a, Liyuan Zhang^{a,*}, Duyang Zang^b, Wei Shen^{a,*}

^a Department of Chemical Engineering, Monash University, Clayton, Victoria 3800,

Australia

^b Functional Soft Matter & Materials Group (FS2M), Key Laboratory of Space Applied

Physics and Chemistry of Ministry of Education, School of Science, Northwestern

Polytechnical University, Shaanxi 710129, China

Corresponding Author

*E-mails: liyuan.zhang@monash.edu; wei.shen@monash.edu

1. Supplementary figures

Fig. S1 illustrates the morphological evolution of the blood sessile drop desiccating on the surface of an ultra-clean glass microscope slide, clearly showing that the crack initiation and growth are time- and location-dependent. Fig. S1 also indicates that the small size of flaw remains for a short time before cracking, which is in agreement with the eq. (2) and (3).

0.09 <i>t_f</i>	0.18 <i>t</i> _f	0.27 <i>t_f</i>	0.36 <i>t</i> _f
<u>200</u> μm	200 µm	<u>200</u> μm	<u>200</u> μm
0.45 t _f	$\sim 0.54 t_f$	$0.63 t_f$	$1 < 0.69 t_f$
			A. A
<u>200</u> μm	200 µm	200 µm	200 µm
0.72 tr	0.75 lg	0.78 tr	0.83 tr
the second	A T	KA L. MAN	the Least
The second	A. A. Mariana	15.	R
200 µm	200 µm	200 µm	200 µm
0.88 t _f	0.92 t _f	0.96 t _f	1.00 t _f
ALL LA	TT 13	ATT 13	ALL LA
AR TAR	RAM	Ref Marine	MAL MAN
200 µm	200 µm	200 µm	200 µm

Fig. S1 Morphological evolution of the blood sessile drop desiccating on the glass substrate under a controlled environment of 23.0 ± 0.5 °C, at 50.0 ± 0.5 % relative humidity (RH).

2. Supplementary video

Video S1. Morphological evolution of the peripheral region of the blood sessile drop during desiccation; magnification: X1000; speed of video: X32.