Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

# **Supporting Information**

## Facile synthesis of hierarchical N-doped hollow porous carbon

### whisker with ultrahigh surface area via synergistic inner-outer

#### activation for casein hydrolysate adsorption

Xin He,<sup>a,b</sup> Pengru Liu,<sup>a</sup> Jing Liu,<sup>a,b</sup> Muhammad Yaseen,<sup>a,c</sup> Mei-ping Zhu,<sup>a</sup> Jianhua Sun,<sup>a,b</sup> Xuemin Cui,<sup>a,b</sup> Dankui Liao<sup>\*,a,b</sup> and Zhangfa Tong<sup>\*,a,b</sup>



Figure S1. SEM images of (a) W-CaCO<sub>3</sub> whisker particles; (b) TGA curves of the W-CaCO<sub>3</sub> and W-CaCO<sub>3</sub>@PDA.



Figure S2. SEM images of W-CaCO<sub>3</sub>@PDA obtained with different concentrations of dopamine hydrochloride solution: (a)  $2 \text{ g} \cdot \text{L}^{-1}$ , (b)  $4 \text{ g} \cdot \text{L}^{-1}$ , (c)  $5 \text{ g} \cdot \text{L}^{-1}$ , (d)  $7 \text{ g} \cdot \text{L}^{-1}$ .



Figure S3. SEM images of W-CaCO<sub>3</sub> particles and W-CaCO<sub>3</sub>@PDA synthesized at different reaction times under 4 g·L<sup>-1</sup> of dopamine hydrochloride solution: (a) 0 h; (b) 2 h; (c) 10 h; (d) 20 h; (e) 25 h; (f) 30 h.



Figure S4. (a-g) XPS spectra, (h) N species (N 1s XPS) and (i) C species (C 1s XPS) contents of HPCW-2, HPCW-3 and HPCW-4.

| Sample     | Langmuir             | BET                  | V <sub>t</sub>          | V <sub>m</sub>          | Sm                   | $S_{\rm m}/S_{\rm t}$ |
|------------|----------------------|----------------------|-------------------------|-------------------------|----------------------|-----------------------|
|            | $(m^2 \cdot g^{-1})$ | $(m^2 \cdot g^{-1})$ | $(cm^{3} \cdot g^{-1})$ | $(cm^{3} \cdot g^{-1})$ | $(m^2 \cdot g^{-1})$ | (%)                   |
| HPCW-1     | 780.2                | 638.4                | 1.104                   | 0.173                   | 382.6                | 59.93                 |
| HPCW-2     | 3648.8               | 3007.0               | 1.669                   | 0.886                   | 2255.9               | 75.02                 |
| HPCW-3     | 3354.3               | 2802.0               | 2.631                   | 0.700                   | 1754.3               | 62.61                 |
| HPCW-4     | 2843.4               | 2372.8               | 1.125                   | 0.796                   | 2044.7               | 86.17                 |
| HPCW-5     | 843.9                | 707.4                | 0.641                   | 0.246                   | 589.5                | 83.33                 |
| HPCW-1-800 | 623.6                | 531.0                | 0.908                   | 0.136                   | 313.5                | 59.04                 |
| HPCW-1-900 | 413.2                | 290.6                | 0.880                   | 0.044                   | 84.2                 | 28.97                 |

Table S1. Pore structure parameters of HPCWs materials.

| Sample                                                | AC <sup>1</sup> | P(GMA–DVB) <sup>2</sup> | OMC <sup>3</sup> |
|-------------------------------------------------------|-----------------|-------------------------|------------------|
| Adsorption quantity (mg·g <sup>-1</sup> )             | 329             | 51.6                    | 300              |
| Surface areas (BET, m <sup>2</sup> ·g <sup>-1</sup> ) | 1408            | 312                     | 639              |
| Adsorbate                                             | Ile-Trp         | BSA                     | BSA              |

Table S2. Comparison of Adsorption quantity of some porous materials for proteins and peptides.

#### REFERENCES

- [1] F. Hippauf, C. Huettner, D. Lunow, L. Borchardt, T. Henle and S. Kaskel, Carbon, 2016, 107, 116-123.
- [2] R. W. Wang, Y. Zhang, G. H. Ma and Z. G. Su, Colloids and Surfaces B: Biointerfaces. 2006, 51, 93–99.
- [3] H. Q. Qin, P. Gao, F. J. Wang, L. Zhao, J. Zhu, A. Q. Wang, T. Zhang, R. A. Wu and H. F. Zou, Angew. Chem. Int. Ed., 2011, 50, 12218-12221.