Supporting Information

A reactive oxygen species (ROS)-responsive low molecular weight gel coloaded with Zn(II) phthalocyanine tetrasulfonic acid and doxorubicin for combined chemo-photodynamic therapy

Long Xu^{a,b}, Mingying Zhao^c, Yidi Yang^a, Yan Liang^d, Changzhen Sun^a, Wenxia Gao^{*b}, Sai Li^c, Bin He^a, and Yuji Pu^{*a}

^a National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China

^b College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China

^c School of Chemical Engineering, Sichuan University, Chengdu 610065, China

^d Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China

Entry	Solvents	Gelator CGC	Control Gelator CGC
		at 37 °C (mg/mL)	at 37 °C (mg/mL)
1	Cyclohexane	Ia	Ι
2	Toluene	Ι	Ι
3	Xylene	Ι	Ι
4	Chloroform	Ι	Ι
5	Dichloromethane	Ι	Ι
6	Methol	G ^b (10 mg/mL)	G (10 mg/mL)
7	Ethanol	G (10 mg/mL)	G (10 mg/mL)
8	Ethyl acetate	Ι	Ι
9	Diethyl ether	Ι	Sc
10	Tetrahydrofuran	Ι	Ι
11	Acetone	S	S
12	Dimethyl sulfoxide	S	S
13	PEG200	S	G (5 mg/mL)
14	PEG200:H ₂ O (5:1-1:1)	G (30 mg/mL)	G (5 mg/mL)

Table S1. The critical gel concentrations and gelation behaviors of gelator in different solvents.

a) I: insoluble, if the gelator is completely insoluble in the solvent;

b) G: gel, if the gelator is able to gelate the solvent;

c) S: solution, if the gelator is completely soluble in the solvent.

Fig. S1. The ¹H NMR spectra of TK (A), Phe-TK-Phe (B), and gelator (C) in DMSO- d_6 , CDCl₃, and DMSO- d_6 , respectively.

Fig. S2. The ¹H NMR spectra of the control gelator (B) and its precursor (A) in $CDCl_3$ and $DMSO-d_6$, respectively.

Fig. S3. ¹H NMR spectra of gelator before (A) and after (B) treatment of ROS stimulus where Fenton reagent was used to mimic ROS conditions in DMSO- d_6 .

Fig. S4. The rheological properties of control blank gel and its drug-loaded gels. (A) Storage modulus as a function of angular frequency of the gels; (B) loss modulus as a function of angular frequency of the gels; (C) dynamic complex viscosity as a function of angular frequency of the gels;

and (D) destroy and recover of the gels.

Fig. S5. The fluorescence intensity of $ZnPCS_4$ at different concentrations (A) and the concentration effect on the fluorescence intensity of $ZnPCS_4$ (B).

0.5 1 2 3 4 6 9 12 24 30 36 48 h

Fig. S6. The images of release medium of DOX-ZnPCS₄-coloaded control gel (a, b, and c) and DOX-ZnPCS₄-coloaded gel (d, e, and f) at different time points in different conditions. (a, d) PBS (pH 7.4), (b, e) PBS (pH 7.4) with 500 mM H_2O_2 , and (c, f) PBS (pH 7.4) with 500 mM H_2O_2 and

irradiation.

Fig. S7. The fluorescence intensity of DOX at different concentrations of H_2O_2 (0, 50, 150, and 250 mM) and incubated for different times (1, 3, and 6 h).

Fig. S8. Histological analysis of heart, liver, spleen, lung, and kidney with different formulations. A: saline(L-); B: $G1^*(L+)$; C: $G2^*(L-)$; D: $G3^*(L+)$; E: $G3^*(L-)$; F: $G4^*(L+)$; G: G1(L+); H: G2 (L-); I: G3 (L+); J: G3 (L-); and K: G4 (L+).