Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B.
This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Aggregation-induced emission (AIE)-Active Fluorescent Probes with
Multisite-Binding Sites toward ATP Sensing and the Live Cell

Imaging

Hengchang Ma,” Manyi Yang, Caili Zhang,® Yucheng Ma, Yanfang Qin, Zigiang Lei,” Lu Chang,
Lei Lei, Tao Wang, Yuan Yang

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-
Environment-Related Polymer Materials Ministry of Education, College of Chemistry and
Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China

*E-mail: mahczju@hotmail.com; Leizq@nwnu.edu.cn.



Table of Contents

Synthesis of TPA-PP, TPA-PPA-1, TPA-PPA-2, TPA-PPA-3.....ccccoiiiiiiiieieeesiieiieiis 2
Scheme S1. Synthesis of TPA-PP and TPA-PPA-1
Scheme S2. Synthesis of TPA-PPA-2

Scheme S3. Synthesis of TPA-PPA-3

Figure S1. The NMR data spectra of TPA-PP........ccoco i, 4
Figure S2. The NMR data spectra Of TPA-PPA-L.......cccoioiriiiiiiie e 5
Figure S3. The NMR data spectra Of TPA-PPA-2.........cooiv i 6
Figure S4. The NMR data spectra of TPA-PPA-3........ocoii e 7
Figure S5. ADSOrption SPECtra STUIES.........ccoie e 8
Figure S6. Fluorescence SPectra StUMIES. ........cccvvrieiiies ettt 10
Table S1. Fluorescence quantum Yield..........coccviieiiiiiiiin e 12
Figure S7. Particle size distributions upon the addition of ATP........c.ccoooeiiiiiiiiiens 12
Figure S8. Tyndall effect of TPA-PPA-3........coiiii e 12
Figure S9. Absorption spectra studies upon the addition of ATP..........cccoveeiecnnenn, 13
Figure S10. Fluorescence spectra studies upon the addition of ATP.........c.cccevveeen. 15
Figure S11. Detection limit upon the addition 0Of ATP.......cccocovoeiiiiiinin e 17
Figure S12. Cell viabilities of HEPG-2 CellS.......ccoeiviviieiiiie e 18



Synthesis of TPA-PP and TPA-PPA-1
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Scheme S1 The synthesis of TPA-PP and TPA-PPA-1

Synthesis of TPA-PPA-2
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Scheme S2 The synthesis of TPA-PPA-2



Synthesis of TPA-PPA-3
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Scheme S3 The synthesis of TPA-PPA-3
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Figure S1 (a) *H NMR spectra of TPA-PP
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Figure S1 (b) *C NMR spectra of TPA-PP
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TPA-PPA-1
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Figure S2 (a) 'H NMR spectra of TPA-PPA-1
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Figure S2 (b) *C NMR spectra of TPA-PPA-1
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Figure S3 (a) *H NMR spectra of TPA-PPA-2
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Figure S3 (b) *C NMR spectra of TPA-PPA-2
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Figure S4 (a) 'H NMR spectra of TPA-PPA-3
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Figure S4 (b) *C NMR spectra of TPA-PPA-3
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Figure S5 (a) Absorption spectra of TPA-PP at a range of 2-20 uM in aqueous

solution containing 2 vol % DMSO.
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Figure S5 (b) Absorption spectra of TPA-PPA-1 at a range of 2-20 uM in aqueous

solution containing 2 vol % DMSO.
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Figure S5 (c) Absorption spectra of TPA-PPA-2 at a range of 2-20 uM in aqueous

solution containing 2 vol % DMSO.
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Figure S5 (d) Absorption spectra of TPA-PPA-3 at a range of 2-20 uM in aqueous

solution containing 2 vol % DMSO.
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Figure S6 (a) Fluorescence spectra of TPA-PP at a range of 2-20 uM in aqueous

solution containing 2 vol % DMSO.
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Figure S6 (b) Fluorescence spectra of TPA-PPA-1 at a range of 2-20 uM in aqueous

solution containing 2 vol % DMSO.
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Figure S6 (c) Fluorescence spectra of TPA-PPA-2 at a range of 2-20 uM in agueous

solution containing 2 vol % DMSO.
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Figure S6 (d) Fluorescence spectra of TPA-PPA-3 at a range of 2-20 uM in aqueous

solution containing 2 vol % DMSO.
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Table S1 Fluorescence quantum yield of probes without ATP and the addition of ATP

Without ATP Addition of ATP
Dex Dem D°(%) Dex dem (%)
TPA-PP? 427 578 0.13 427 589 0.79
TPA-PPA-1? 432 591 0.16 432 594 1.72
TPA-PPA-2° 437 610 0.45 437 597 4,36
TPA-PPA-3?2 451 618 0.89 451 601 26.43

3Conc. of TPA-PP, TPA-PPA-1, TPA-PPA-2and TPA-PPA-3: 20 uM; "The
fluorescence quantum yield without ATP; “The fluorescence quantum yieldwith ATP
(ATP conc.: 200pM.)
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Figure S7 Particle size distributions of TPA-PP, TPA-PPA-1, TPA-PPA-2, TPA-PPA3
in aqueous solution containing 2 vol % DMSO and with the addition of ATP.

Figure S8 Tyndall effect of TPA-PPA-3 (a) in aqueous solution containing 2 vol %
DMSO and (c) with the addition of ATP, (b), (d) is the corresponding photographs
after two weeks.
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Figure S9 (a) Absorption spectra of TPA-PP upon the addition of ATP in aqueous
solution containing 2 vol % DMSO. TPA-PP concentration: 20 pM.
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Figure S9 (b) Absorption spectra of TPA-PPA-1 upon the addition of ATP in aqueous
solution containing 2 vol % DMSO. TPA-PPA-1 concentration: 20 uM.
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Figure S9 (c) Absorption spectra of TPA-PPA-2 upon the addition of ATP in aqueous
solution containing 2 vol % DMSO. TPA-PPA-2 concentration: 20 uM.
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Figure S9 (d) Absorption spectra of TPA-PPA-3 upon the addition of ATP in aqueous

solution containing 2 vol % DMSO. TPA-PPA-3 concentration: 20 uM.
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Figure S10 (a) Fluorescence spectra of TPA-PP upon the addition of ATP in aqueous
solution containing 2 vol % DMSO. TPA-PP concentration: 20 uM.
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Figure S10 (b) Fluorescence spectra of TPA-PPA-1 upon the addition of ATP in
aqueous solution containing 2 vol % DMSO. TPA-PPA-1concentration: 20 pM.
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Figure S10 (c) Fluorescence spectra of TPA-PPA-2 upon the addition of ATP in

aqueous solution containing 2 vol % DMSO. TPA-PPA-2 concentration: 20 pM.
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Figure S10 (d) Fluorescence spectra of TPA-PPA-3 upon the addition of ATP in
aqueous solution containing 2 vol % DMSO. TPA-PPA-3 concentration: 20 pM.
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Figure S11 Fluorescence spectras of (a) TPA-PPA-1(Aex = 432 nm), (b) TPA-PPA-2

(Aex = 437 nm), (c) TPA-PPA-3(Aex = 451 nm) upon the addition of ATP in dilute

solvents.
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Figure S12 (a) Cell viabilities of HepG-2 cells treated with different concentrations of

TPA-PP for 96 h by MTT assay
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Figure S12 (b) Cell viabilities of HepG-2 cells treated with different concentrations
of TPA-PPA-1 for 96 h by MTT assay
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Figure S12 (c) Cell viabilities of HepG-2 cells treated with different concentrations of

TPA-PPA-2 for 96 h by MTT assay
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Figure S12 (d) Cell viabilities of HepG-2 cells treated with different concentrations
of TPA-PPA-3 for 96 h by MTT assay
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