Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

## Electronic supplementary information

## Hydrogen bonding Induced Protein Adsorption on Polymer Brush: A Monte Carlo

Study

Yuanyuan Han, Jie Cui, Jing Jin,\* Wei Jiang\*

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

\*Corresponding author: E-mail: wjiang@ciac.ac.cn; jjin@ciac.ac.cn. Tel: 86-431-

85262151. Fax: 86-431-85262126



Figure S1. Variation of the contact number between H monomers and substrate ( $N_{\text{H-Substrate}}$ ) with grafting density ( $\sigma$ ) in the case of short grafting chain, i.e.,  $le_p = 10$ . Data are mean ± SD, n = 5. (a)-(c) showing the morphologies of the grafting polymers and the adsorbed proteins.



**Figure S2.** Morphological snapshots showing two typical adsorption processes of a single protein in the case of short polymer brush with low grafting density ( $le_p = 10$  and  $\sigma = 0.05$ ). (a<sub>1</sub>)-(a<sub>4</sub>) the adsorption process of one protein. (b<sub>1</sub>)-(b<sub>4</sub>) the adsorption process of the other protein. In order to clearly observe the morphological transition of the protein, the polymer brush is not drawn.



**Figure S3.** Morphological snapshots showing two typical adsorption processes of a single protein in the case of short polymer brush with high grafting density ( $le_p = 10$  and  $\sigma = 0.30$ ). (a<sub>1</sub>)-(a<sub>4</sub>) the adsorption process of one protein. (b<sub>1</sub>)-(b<sub>4</sub>) the adsorption process of the other protein.



**Figure S4.** Variations of H-H contact number between non-bonded nearest neighbor H monomers ( $N_{\rm HH}$ ) with simulation time when the grafting density is  $\sigma = 0.30$ . The amount of proteins in the simulation box is 5. The grafting chain length is  $le_{\rm p} = 10$ . (a) and (b) showing the morphologies of the proteins and polymer brushes at corresponding simulation time.



Figure S5. Variation of the contact number between H monomers and substrate ( $N_{\text{H-Substrate}}$ ) with grafting density ( $\sigma$ ) in the case of long grafting chain, i.e.,  $le_p = 25$ . Data are mean ± SD, n = 5. (a)-(c) showing the morphologies of the grafting polymers and the adsorbed proteins.



**Figure S6.** Variations of the mean square radius of gyration of the grafting chains projected onto the surface normal  $(\langle S_{\perp}^2 \rangle)$  and the surface plane  $(\langle S_{\parallel}^2 \rangle)$  with the hydrophilicity of grafting polymer chains  $(-\varepsilon_{PW})$  in the case of  $le_{P} = 25$ ,  $\sigma = 0.15$ .