

Supplementary Information

Internalization Studies of Zeolite Nanoparticles by Human Cell

Natália Vilaça,^a Ricardo Totovao,^b Eko Adi Prasetyanto,^{bc} Vera Miranda-Gonçalves,^d Filipa Morais-Santos,^{ef} Rui Fernandes,^g Francisco Figueiredo,^g Manuel Bañobre-López,^h António M. Fonseca,^{ai} Luisa De Cola,^b Fátima Baltazar*^{ef} and Isabel C. Neves*^{ai}

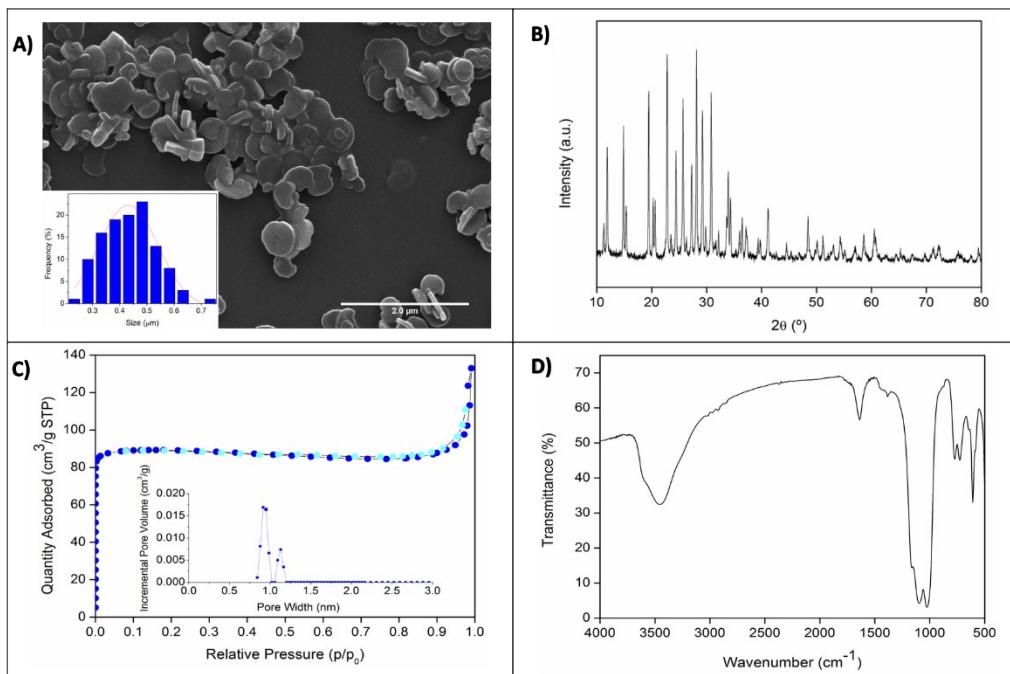
^a*Centre of Chemistry, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;*

^b*Institut de Science et Ingénierie Supramoléculaires (ISIS - UMR 7006), Université de Strasbourg & CNRS. 8 Rue Gaspard Monge, 67000 Strasbourg, France;*

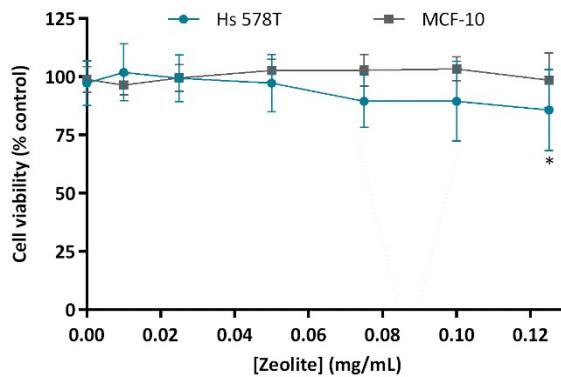
^c*Faculty of Medicine, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia;*

^d*Cancer Biology & Epigenetics Group – Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal;*

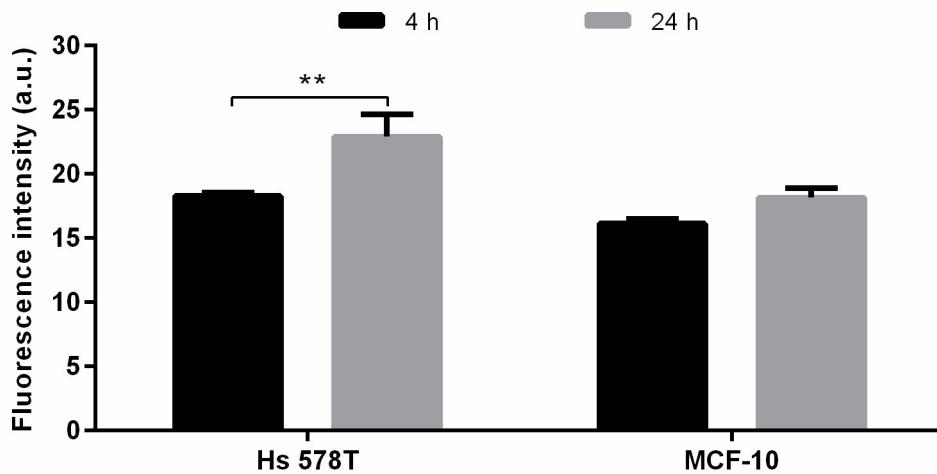
^e*Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal;*

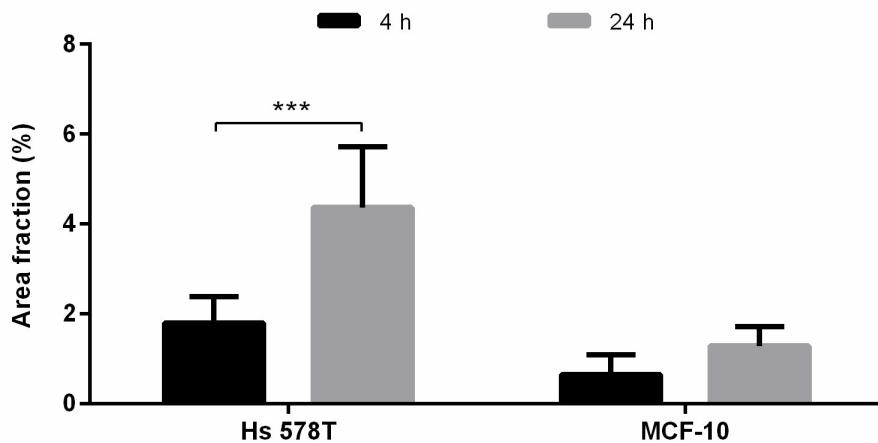

^f*ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal;*

^g*i3S - Instituto de Investigação e Inovação em Saúde and HEMS / IBMC - Histology and Electron Microscopy Service, Universidade do Porto, 4200-135 Porto, Portugal;*


^h*International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal;*

ⁱ*CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;*


*Corresponding author: ineves@quimica.uminho.pt; fbaltazar@med.uminho.pt


Figure S1: Characterization of the synthesized zeolite L. A) SEM micrographs of zeolite L dispersed in ethanol. Inset: Histogram representing statistical size distribution of zeolite L nanoparticles. B) XRD pattern of zeolite L. C) Nitrogen adsorption of zeolite L. Inset: pore size distribution. D) FTIR spectrum of zeolite L.

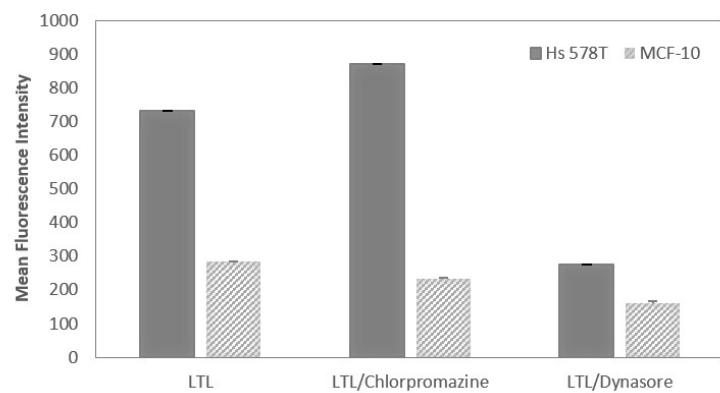

Figure S2: Cell viability of Hs 578T and MCF-10 cells, evaluated with SRB assay after 48 h incubation time with increasing concentrations of zeolite. Results are expressed in relation to the control (0 % of zeolite, considered 100 % of viability) as mean \pm SD of three independent experiments, each performed in triplicate. Differences with a $p < 0.05$ were considered statistically significant (*).

Figure S3: Fluorescence intensity measured using ImageJ Software. Zeolite L nanoparticles were incubated with Hs 578T and MCF-10 cells for 4 and 24 h incubation times at a concentration of 50 μ g/mL. Difference between groups were evaluated by Two-way ANOVA followed by Bonferroni post-test. Results are expressed as mean \pm SD, $n=3$ for all experiments. ** $p<0.01$.

Figure S4: Percentage of zeolite L nanoparticles internalized by Hs 578T and MCF-10 cells. Cells were incubated with 50 μ g/mL of zeolite L at 4 and 24 h incubation times. Results were analyzed by ImageJ Software. Difference between groups were evaluated by Two-way ANOVA followed by Bonferroni post-test. *** $p<0.001$. Mean \pm SD. $n=4$ for Hs 578T experiments and $n=5$ for MCF-10 experiments.

Figure S5: Effects of the pharmacological inhibitors on the uptake of zeolite L in Hs 578T and MCF-10 cells. Cells were treated with chlorpromazine (10 μ g/mL) and dynasore (400 μ M) for 1 h before incubation with 50 μ g/mL of zeolite L for 4 h. After incubation cells were collected and analyzed by flow cytometry.