Electronic Supplementary Information

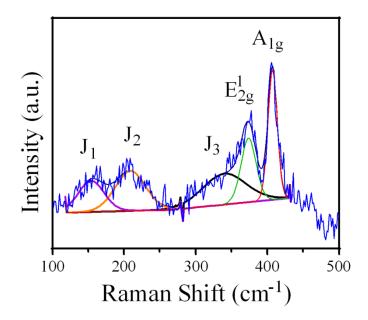
Peroxidase-Like Activity of MoS₂ Nanoflakes with Different

Modifications and Their Application for H₂O₂ and Glucose Detection

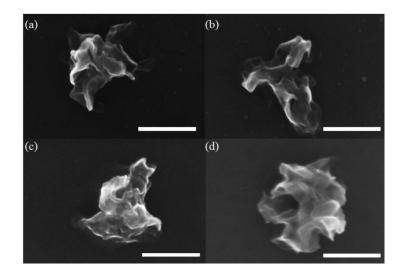
Jie Yu^{a,b}, Dongqing Ma^b, Linqiang Mei^b, Qin Gao^b, Wenyan Yin^{b,*}, Xiao

Zhang^b, Liang Yan^b, Zhanjun Gu^{b,*}, Xiaoyan Ma^{a,*}, and Yuliang Zhao^b

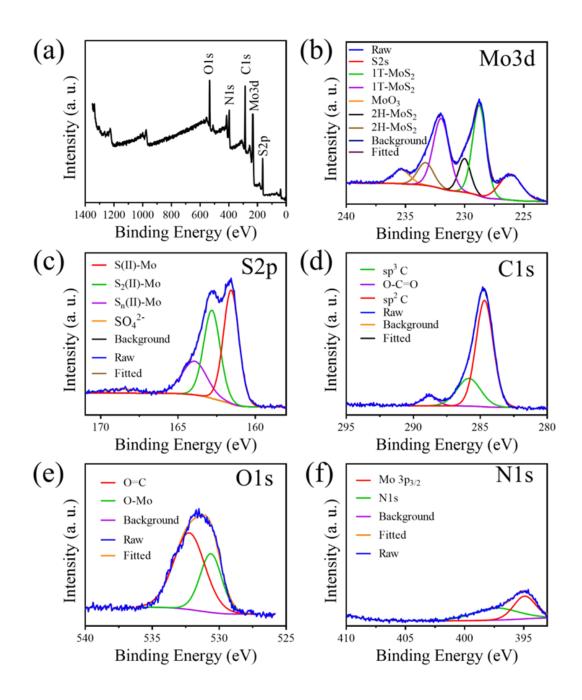
^aKey Laboratory of Polymer Science and Technology, School of Science,

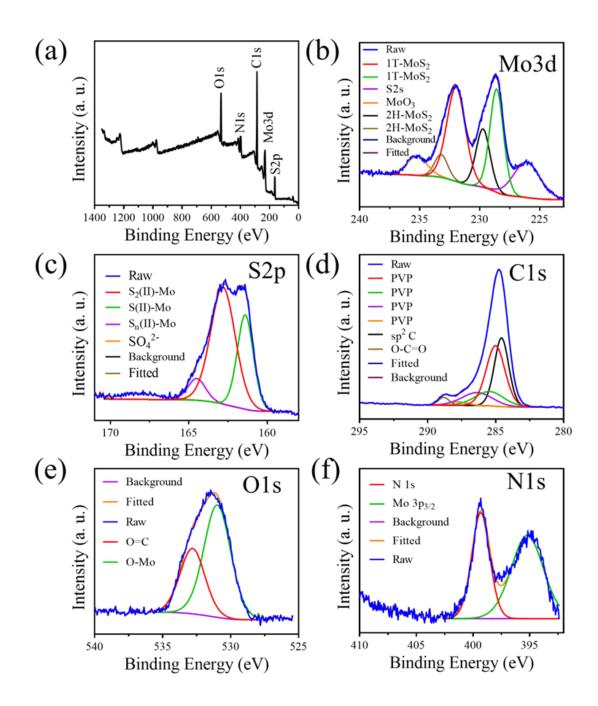

Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, P. R. China

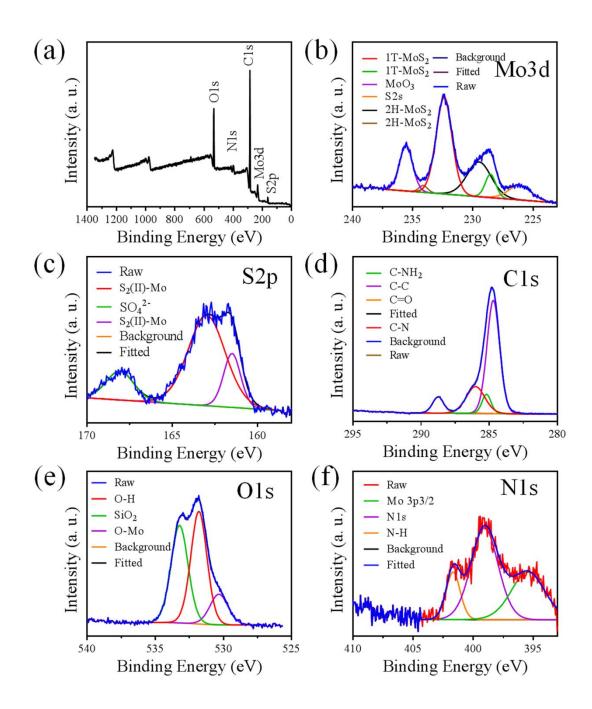
^bKey Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China

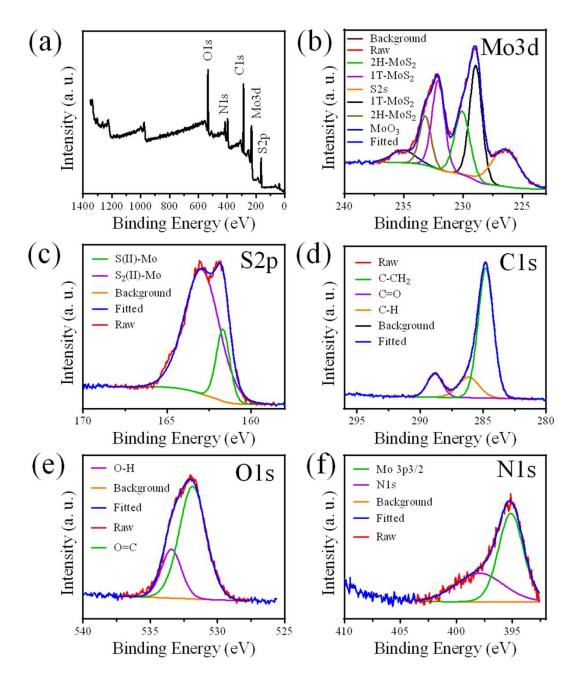

*Corresponding Authors E-mail: yinwy@ihep.ac.cn, zjgu@ihep.ac.cn, m_xiao_yana@nwpu.edu.cn,

The descriptions about interactions between the MoS₂ and functionalization molecules:


There are three types of interaction between MoS₂ and functionalization molecules, including electrostatic interaction (PEI-MoS₂), hydrophilic/hydrophobic interaction (PVP-MoS₂, or PAA-MoS₂), and covalent interaction (Cys-MoS₂). Briefly, (1) for MoS₂-Cys, the S vacancy could exist in 2H and 1T phases of MoS₂, which are all layered structure except for the different atomic arrangement of S in their crystal phase.¹ Therefore, the S vacancy provided an active site to form covalent bond between Cys and MoS₂ via thiol group;² (2) For MoS₂-PEI, due to the negatively charged MoS₂ with 1T and 2H phase, the PEI molecule with positive charge can adsorb onto the surface of MoS₂ NFs via electrostatic interaction; (3) For PVP- or PAA-MoS₂, the hydrophobic alkyl chains in PVP and PAA molecule provided hydrophilic/hydrophobic interaction between MoS₂ and PAA/PVP, thus the mixed phase of MoS₂ were involved and hydrophobic interaction may play a key role in PAA- and PVP- MoS₂ NFs.


Fig. S1. Raman spectrum of $MoS_2 NFs$. The peaks of J_1 , J_2 , and J_3 were attributed to the 1T phase of MoS_2 .


Fig. S2. FE-SEM images of (a) PVP-MoS₂, (b) PEI-MoS₂, (c) PAA-MoS₂, and (d) Cys-MoS₂. Scale bar: 200 nm.


Fig. S3. XPS spectra of MoS₂ NFs. (a) Survey plot, (b-f) high-resolution XPS spectra: (b) Mo3d, (c) S2p, (d) C1s, (e) O1s, and (f) N1s.

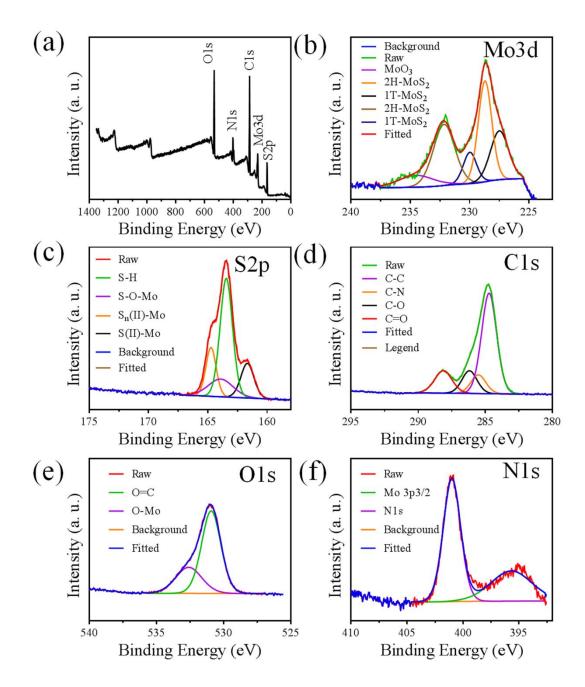
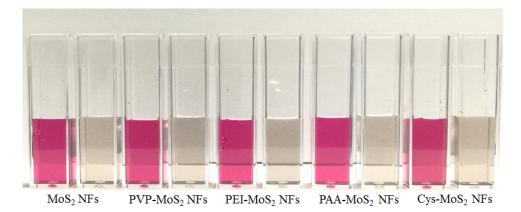
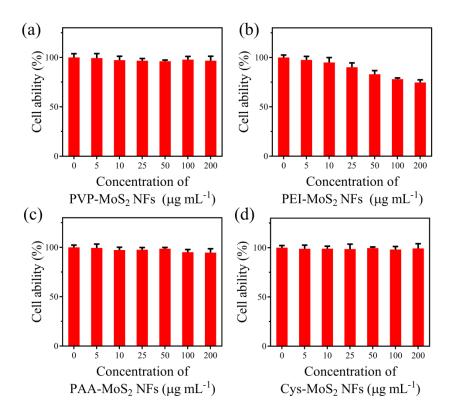
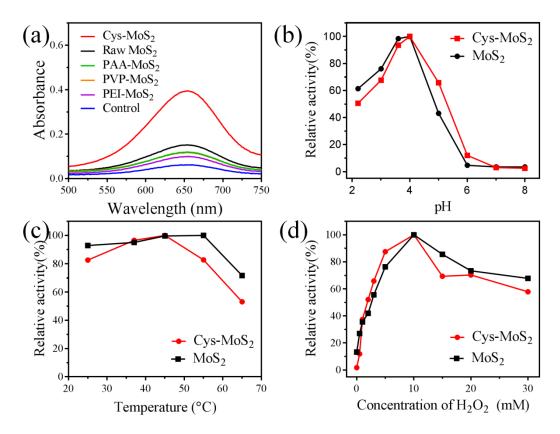
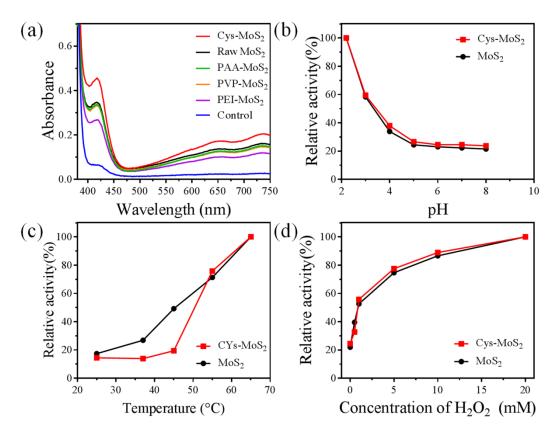

Fig. S4. XPS spectra of PVP-MoS₂ NFs. (a) Survey plot, (b-f) high-resolution XPS spectra: (b) Mo3d, (c) S2p, (d) C1s, (e) O1s, and (f) N1s.

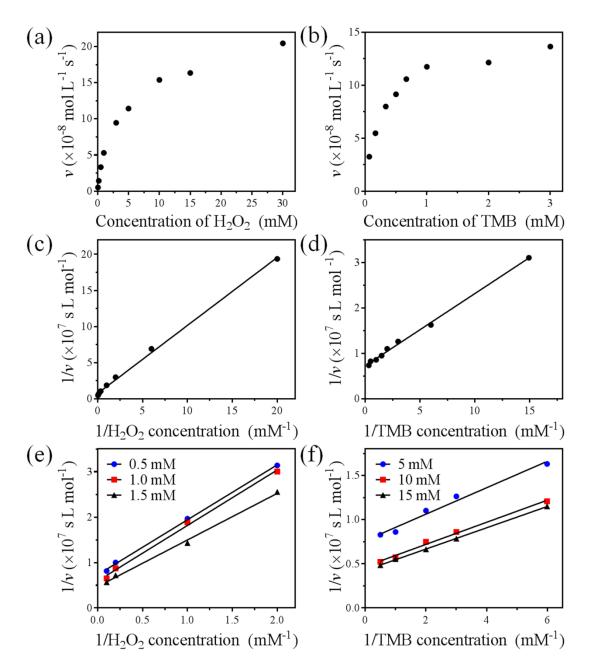
Fig. S5. XPS spectra of PEI-MoS₂ NFs. (a) Survey plot, (b-f) high-resolution XPS spectra: (b) Mo3d, (c) S2p, (d) C1s, (e) O1s, and (f) N1s.

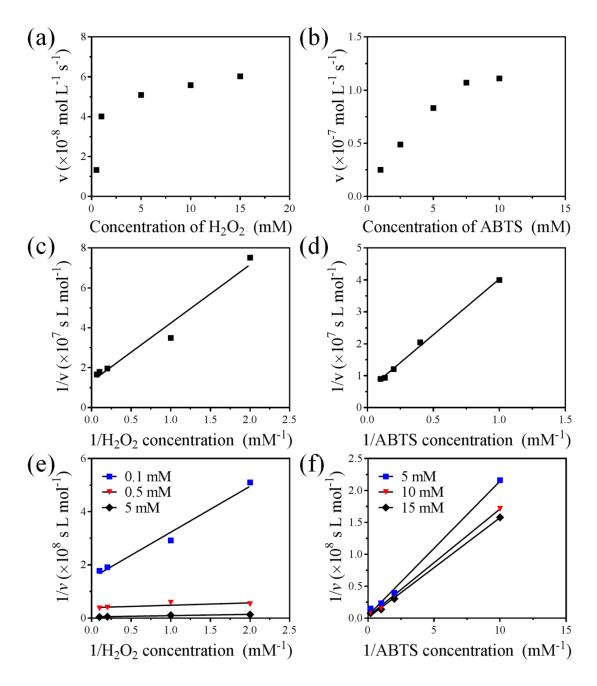
Fig. S6. XPS spectra of PAA-MoS₂ NFs. (a) Survey plot, (b-f) high-resolution XPS spectra: (b) Mo3d, (c) S2p, (d) C1s, (e) O1s, and (f) N1s.

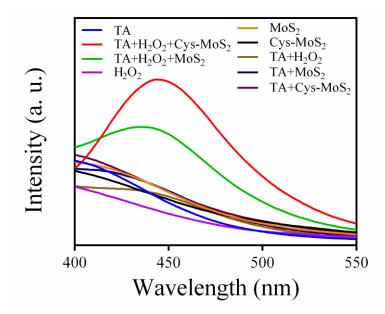
Fig. S7. XPS spectra of Cys-MoS₂ NFs. (a) Survey plot, (b-f) high-resolution XPS spectra: (b) Mo3d, (c) S2p, (d) C1s, (e) O1s, and (f) N1s.


Fig. S8. Stability tests of MoS_2 NFs and modified MoS_2 NFs in DMEM (left) and water (right) solutions. The concentration of each MoS_2 NFs solution was 100 µg mL⁻¹.


Fig. S9. Cell viabilities of (a) PVP-MoS₂ NFs, (b) PEI-MoS₂, (c) PAA-MoS₂ NFs, and (d) Cys-MoS₂ NFs after incubation with HUVEC cells for 24 h.


Fig. S10. Peroxidase-like catalytic activity of MoS_2 NFs toward TMB with or without modifications. (a) UV-Vis spectra of raw MoS_2 NFs and modified MoS_2 NF. (b) pHand (c) temperature-dependent activities of MoS_2 NFs and Cys- MoS_2 NFs. (d) H_2O_2 concentration-dependent peroxidase activity of MoS_2 NFs and Cys- MoS_2 NFs. The concentrations of NFs and TMB were respectively 33 µg mL⁻¹ and 1 mM for all the experiment. The concentration of H_2O_2 for absorbance, pH and temperature measurements was 10 mmol L⁻¹. The solution containing 1 mM of TMB and 10 mM of H₂O₂ was used as control.


Fig. S11. Peroxidase-like catalytic activity of MoS_2 NFs toward ABTS with or without modifications. (a) UV-Vis spectra of raw MoS_2 NFs and modified MoS_2 NFs. (b) pH- and (c) temperature-dependent activities of MoS_2 NFs and Cys- MoS_2 NFs. (d) H_2O_2 concentration-dependent peroxidase-like catalytic activity of MoS_2 NFs and Cys- MoS_2 NFs. The concentrations of NFs and ABTS were respectively 33 µg mL⁻¹ and 1 mM for all the experiment. The concentration of H_2O_2 for absorbance, pH and temperature measurements was 10 mM. The solution containing 1 mM of ABTS and 10 mM of H_2O_2 was used as control.

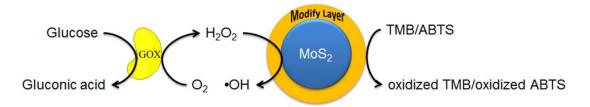

Fig. S12. Steady-state kinetic assay and catalytic mechanism of raw MoS_2 NFs. The velocity was determined by measuring the absorbance of oxidized TMB under different (a) H_2O_2 and (b) TMB concentrations. (c-d) Corresponding double-reciprocal plots of MoS_2 NFs at a fixed concentration of one substrate *versus* varying the concentration of another (c) H_2O_2 or (d) TMB. (e-f) Lineweaver-Burk plots of raw MoS_2 NFs at each concentration of one substrate versus varying concentration of another substrate.

Fig. S13. Steady-state kinetic assay and catalytic mechanism of raw MoS_2 NFs. The velocity was determined by measuring the absorbance of oxidized ABTS under different (a) H_2O_2 and (b) ABTS concentrations. (c-d) Corresponding double-reciprocal plots of MoS_2 NFs at a fixed concentration of one substrate *versus* varying the concentration of (c) H_2O_2 or (d) ABTS. (e-f) Lineweaver-Burk plots of MoS_2 NFs at each concentration of one substrate versus varying concentration of another substrate.

Fig. S14. TA as fluorescent probe to test the formation of \cdot OH at pH = 4.0. Reaction conditions: 1.0 µg mL⁻¹ of Cys-MoS₂ and MoS₂, 100 µM of H₂O₂, 0.5 mM of TA, and 0.1 M acetate buffer (pH = 4.0) at 25 °C for 12 h.

Scheme S1. Illustration of MoS_2 NFs and Cys- MoS_2 NFs used for H_2O_2 and glucose detection.

Materials	Method	Linear Range (mmol L ⁻¹)	Ref.
Hollow Pt/MWCNTs	electrochemistry	0.0012-8.4	3
PVP-Ag nanowires	electrochemistry	2–20	4
Cu ₂ O nanocubes/graphene	electrochemistry	0.3–3.3	5
Au nanoclusters	fluorimetry	0.01- 0.5	6
B-doped carbon quantum do	ot fluorimetry	0.008-0.08	7
QDs-ConA-β-CDs-AuNP	fluorimetry	0.0001-0.05	8
Fe-Phen-CFs	fluorimetry	0.0005-0.2	9
Graphene oxide	colorimetry	0.001-0.02	10
Carbon nanodots	colorimetry	0.001-0.5	11
ZnFe ₂ O ₄ nanoparticles	colorimetry	0.0012-0.019	12
SDS-MoS ₂	colorimetry	0.002-0.1	13
PVP-MoS ₂ nanoparticles	colorimetry	1-10	14
CoOOH nanoflakes	colorimetry	0.0053-0.5	15
Porphyrin-CeO ₂	colorimetry	0.019-0.15	16
MoS ₂ /graphene oxide	colorimetry	0.001-0.05	17
MoS ₂ NFs	colorimetry	0.1-1	This work
Cys-MoS ₂ NFs	colorimetry	0.05-1	This work

Table S1. Comparisons of various methods for glucose detection.

References

- 1. D. Voiry, A. Mohite and M. Chhowalla, *Chem. Soc. Rev.*, 2015, 44, 2702-2712.
- 2. S. S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. Huang and V. P. Dravid, *J. Am. Chem. Soc.*, 2013, **135**, 4584-4587.
- 3. Y. Wang, R. Yuan, Y. Chaia, W. Li, Y. Zhuo, Y. Yuan and J. Li, *J. Mol. Catal. B: Enzym.*, 2011, **71**, 146-151.
- 4. X. Yang, J. Bai, Y. Wang, X. Jiang and X. He, *Analyst*, 2012, **137**, 4362-4367.
- 5. M. Liu, R. Liu and W. Chen, *Biosens. Bioelectron.*, 2013, **45**, 206-212.
- L. Jin, L. Shang, S. Guo, Y. Fang, D. Wen, L. Wang, J. Yin and S. Dong, Biosens. Bioelectron., 2011, 26, 1965-1969.
- 7. X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen and H. Feng, *Analyst*, 2014, **139**, 2322-2325.
- B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li and L. Yu, *Chem. Eur. J.*, 2008, 14, 3637-3644.
- X. Zhu, J. Xiang, J. Li, C. Feng, P. Liu and B. Xiang, J. Colloid Interface Sci., 2018, 511, 209-214.
- 10. Y. Song, K. Qu, C. Zhao, J. Ren and X. Qu, Adv. Mater., 2010, 22, 2206-2210.
- 11. W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng and Y. Huang, *Chem. Commun.*, 2011, **47**, 6695-6697.
- 12. L. Su, J. Feng, X. Zhou, C. Ren, H. Li and X. Chen, *Anal. Chem.*, 2012, **84**, 5753-5758.

- 13. K. Zhao, W. Gu, S. Zheng, C. Zhang and Y. Xian, *Talanta*, 2015, **141**, 47-52.
- 14. J. Yu, X. Y. Ma, W. Y. Yin and Z. J. Gu, *RSC Adv.*, 2016, 6, 81174-81183.
- 15. Y. Wang, X. Shen and F. Chen, *Journal of Molecular Catalysis A: Chemical*, 2014, **381**, 38-45.
- 16. J. R. Lince, A. M. Pluntze, S. A. Jackson, G. Radhakrishnan and P. M. Adams, *Tribology Letters*, 2014, **53**, 543-554.
- 17. J. Cao, X. Zhang, Y. Zhang, J. Zhou, Y. Chen and X. Liu, *PLOS ONE*, 2016, DOI: 10.1371/journal.pone.0161374.