Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Dual-emissive polystyrene@zeolitic imidazolate framework-8 composite for ratiometric

detection of singlet oxygen

Jie Gao, Caihong Wang, Hongliang Tan*

Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China.

*Corresponding author: E-mail: <u>hltan@jxnu.edu.cn</u>

Figure S1. EDS spectrum of EuPS.

Figure S2. XRD pattern of EuPS@AnC/ZIF-8.

Figure S3. N_2 adsorption-desorption isotherms of EuPS@ZIF/8 (a) and EuPS@AnC/ZIF-8 (b). Insets are their corresponding pore size distributions.

Figure S4. The AnC release profile from EuPS@AnC/ZIF-8 in Tris-HCl buffer (10 mM, pH 8.5).

Figure S5. Emission lifetimes of EuPS and EuPS@AnC/ZIF-8.

Figure S6. Time-dependent F_{410}/F_{615} changes of EuPS@AnC/ZIF-8 in the presence of 300 μ M of ¹O₂.

Figure S7. Effects of pH on the fluorescence of EuPS@AnC/ZIF-8.

Sensors	Analytic methods	Traps	Detection limit (nM)	Ref
Thiafulvalene derivative	Chemiluminescence	Anthracene	76	1
Tetrathiafulvalene-anthracene dyad	Chemiluminescence	Anthracene	1000	2
Europium chelate	Fluorescence	Anthracene	3.8	3
Anthryl appended porphyrin	Fluorescence	Anthracene	240	4
Ru(II)-bipyridine derivative	Fluorescence	Anthracene	170	5
Cyanine derivative	Fluorescence	Histidine	7.9	6
Rhodamine-anthracene compound	Fluorescence	Anthracene	3220	7
Europium-based porous silicon	Fluorescence	Anthracene	37	8
EuPS@AnC/ZIF-8	Fluorescence	Anthracene	43	This work

Table S1. Comparison of various sensors for ${\rm ^1O_2}$ detection

Figure S8. Emission spectra (a) and fluorescent intensity at 410 nm (b) of AnC in the presence of ${}^{1}O_{2}$ with different concentrations. Inset is the linear calibration plots of fluorescent intensity of AnC at 410 nm against ${}^{1}O_{2}$ concentrations.

Figure S9. The F_{410}/F_{615} changes of EuPS@AnC/ZIF-8 after storing different times at room temperature.

Figure S10. The changes of the F_{410}/F_{615} of EuPS@AnC/ZIF-8 in the presence of ${}^{1}O_{2}$ and interferential substances (each 200 μ M). Black bars represent the addition of interferential substance (200 μ M); Red bars represent the addition of interferential substance (200 μ M) and ${}^{1}O_{2}$ (200 μ M) together.

Figure S11. Viability of HeLa cells after incubation with different concentrations of EuPS@AnC/ZIF-8 for 24 h.

Samples	Added (<u>µ</u> M)	Detected (<u>µ</u> M)	Recovery (%)	RSD (%, n = 5)
1	5	4.96	99.13	2.29
2	20	21.93	109.65	3.69
3	50	54.45	108.90	3.70

Table S2. Determination of ${}^{1}O_{2}$ in serum samples.

References:

- 1. X. Li, G. Zhang, H. Ma, D. Zhang, J. Li and D. Zhu, J. Am. Chem. Soc., 2004, 126, 11543-11548.
- 2. X. Zheng, S. Sun, D. Zhang, H. Ma and D. Zhu, Anal. Chim. Acta, 2006, 575, 62-67.
- 3. B. Song, G. L. Wang, M. Q. Tan and J. L. Yuan, J. Am. Chem. Soc., 2006, 128, 13442-13450.
- 4. M. You, Y. Wang, H. Wang and R. Yang, Chinese Sci. Bull, 2011, 56, 3253-3259.
- 5. Z. Ye, B. Song, Y. Yin, R. Zhang and J. Yuan, Dalton T., 2013, 42, 14380-14383.
- 6. K. Xu, L. Wang, M. Qiang, L. Wang, P. Li and B. Tang, Chem. Commun., 2011, 47, 7386-7388.
- 7. Y. Hui, L. Xi, W. Qingfeng, L. Qiang, W. Shuai and G. Yong, Chem Lett, 2015, 44, 244-246.
- 8. S. N. A. Jenie, S. E. Plush and N. H. Voelcker, Langmuir, 2017, 33, 8606-8613.