An Ultra-small Thermosenstive Nanocomposite with Mo₁₅₄-Core as Comprehensive Platform for NIR-Triggered Photothermal-Chemotherapy

Simin Zhang,[†] Haobin Chen,[‡] Guohua Zhang,[†] Xueping Kong,[†] Shengyan Yin,[‡] Bao

 Li^{\dagger} and $Lixin Wu^{*, \dagger}$

*State Key Laboratory of Supramolecular Structure and Materials, Jilin University,

Changchun, 130012, China.

[‡]State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.

Supporting Information

Table of Contents

FT-IR spectra	.S1
Thermo Gravimetic Analysis (TGA)	.S2
Elemental Analysis (EA)	.S2
¹ H NMR spectra in physiological conditions	.S2
Zeta potential.	.83
Dynamic Light Scattering (DLS) Analysis	.83
Calculation of photothermal conversion efficiency (η)	.S4
Loading capacity of DOX	.85
Dynamic Light Scattering (DLS) Analysis	.S6
Photothermal Heating Plots	.S6

Figure S1. IR spectra of pure $D_{15}Mo_{154}$, Mo_{154} , and D-3 in KBr pellets.

D-3/cm ⁻¹	$D_{15}Mo_{154} / cm^{-1}$	Assignment	D-3/cm ⁻¹	$D_{15}Mo_{154} / cm^{-1}$	Assignment
		O–H asym. str.	1248	1250	CH ₂ twisting
2933	2933	CH ₃ asym. str.	1173	1172	=C-O-C asym. str.
2823	2824	CH ₂ sym. str.	1116	1114	C–O–C stretching
1597	1597	C=C frame str.	1068	1068	=C-O-C asym. str.
1454	1452	CH ₂ scissoring		978, 914	v(Mo=O)
1385	1380	CH ₃ scissoring	844	847	CH str.
1350	1352	CH ₂ wagging		750,630,559	
1325	1323	CH ₂ wagging	758		CH ₂ rocking
1297	1297	CH ₂ twisting			

Table S1. The assignments of infrared spectra of $D_{15}Mo_{154}$ in solid state.

Figure S3. TGA curve of $D_{15}Mo_{154}$.

Table S2. The summary of elemental analysis for the prepared complex.^[a]

		С	Н	N	Мо
D ₁₅ Mo ₁₅₄	Calcd. (%)	35.56	4.82	0.38	27.00
	Found (%)	35.28	4.88	0.35	26.57

[a] The elemental analytical results of C, H and N were obtained from organic elemental analysis, and the elemental analysis of Mo was performed on inductive coupled plasma emission spectrometer.

Figure S4. ¹H NMR spectra of D-3, and $D_{15}Mo_{154}$ in D_2O solution without and with phosphate buffer (PBS).

Figure S5. Zeta potential of (a) D-GdSiW-R complex and (b) pure $GdSiW_{11}$ in aqueous solution, where the concentration is fixed at 0.05 mM.

Figure S6. DLS curves of D-3 and Mo_{154} in aqueous solution, where the concentration of Mo_{154} is 0.03 mM and D-3 is 0.45 mM.

Calculation of photothermal conversion efficiency (η) of D₁₅Mo₁₅₄

Calculation of θ .

The θ is a dimensionless driving force temperature.

$$\theta = \frac{T - T_{Surr}}{T_{Max} - T_{Surr}} \tag{1}$$

where *T* is the solution temperature, T_{Surr} is ambient temperature of the surroundings, and T_{Max} is the equilibrium temperature.

Calculation of τ_s .

The τ_s is system heat-transfer time constant and it is estimated according to Figure S7b.

$$\tau_s = -\frac{\ln\theta}{t} \tag{2}$$

Calculation of hS.

The h is heat transfer coefficient, S is the surface area of the container.

$$hS = \frac{\sum_{i} m_i C_{p,i}}{\tau_s} \tag{3}$$

where *m* and *Cp* are the mass and heat capacity of water, respectively.

Calculation of η .

The η is the photothermal conversion efficiency of D₁₅Mo₁₅₄.

$$\eta = \frac{hS(T_{Max} - T_{Surr}) - Q_{dis}}{I(1 - 10^{-A_{808}})}$$
(4)

where, *I* is incident laser power, A_{808} is absorbance of $D_{15}Mo_{154}$ in a sample cell at wavelength 808 nm, Q_{dis} expresses heat dissipated from light absorbed by the container itself, and it is calculated independently using a container containing pure water.

In the present system, we get the plot of $-\ln\theta$ versus the time in Figure S7b, according to equation (1), in which T parameteres are estimated from Figure S7a. Therefore, τ_s is calculated to be:

$$\tau_s = -\frac{\ln \theta}{t} = 420.2073$$
$$hS = \frac{\sum_i m_i C_{p,i}}{\tau_s} = 0.01$$

Because

$$=\frac{cm\Delta T}{t}=\frac{4.2*10^{-3}J/(kg\cdot ^{\circ}\text{C})*10^{-3}kg*(27^{\circ}\text{C}-24^{\circ}\text{C})}{300s}=_{0.042\,J\cdot s^{-1}}$$

 Q_{dis}

and $A_{808} = 1.3$, thus,

$$\eta = \frac{hS(T_{Max} - T_{Surr}) - Q_{dis}}{I(1 - 10^{-A_{808}})} = 30.9 \%$$

Figure S7. (a) The plot of temperature variation in $D_{15}Mo_{154}$ aqueous solution that encounters a 808 nm laser irradiation at a power density of 1 W/cm² for 300 s and then cooled to room temperature gradually under ambient environment; and (b) plot of time versus the $-\ln\theta$ obtained from the cooling period in Figure S7a, where the solution volume is 1 mL.

Table S3. The summary of loading capacity of DOX in $D_{15}Mo_{154}$.

Initial molar

ratio of	Initial mass of DOX	unreacted mass of	Loading
D ₁₅ Mo ₁₅₄ :DOX	(mg)	DOX (mg)/Abs ^[a]	capacity ^[b]
1:10	2.9	1.439/0.192	1:5

[a] The free (unloaded) DOX is taken from outside the dialysis bag and calculated from the following work plot of absorbance in UV-vis spectra versus the concentration of pure DOX·HCl in aqueous solution.

[b] The loading capacity is defined as molar ratio of $D_{15}Mo_{154}$ to DOX.

Figure S8. DLS curves of (a) DOX·HCl and (b) $D_{15}Mo_{154}$ @DOX in aqueous solution.

Figure S9. Photothermal heating curve of $D_{15}Mo_{154}$ @DOX aqueous solution (0.05 mM) under exposure of 808 nm laser (power density of 1 W/cm²) versus time.