Supporting information for

A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice

Yanhui Zhang ^a, Lin Ma ^b, Chunchao Tang ^b, Shengnan Pan ^a, Donglei Shi ^a, Shaojing Wang ^a,

Minyong Li^{b, *} and Yuan Guo^{a, *}

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Ave, P. R. China

^b Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China

*E-mail: guoyuan@nwu.edu.cn

Table of Contents

1.	Tautomerism equilibrium of ROA in diffrent solution	S2
2.	Acid-base equilibrium of ROA in different pH	S2
3.	Single crystal X-ray structure of spirocyclized ROA	S 3
4.	Crystal data and structure refinement for spirocyclized ROA	S 3
5.	UV-vis spectra of RO610 with increasing concentrations of ClO-	S 4
6.	Fluorescence intensity changes in different pH of RO610	S 4
7.	Selecitivity of RO610 towards various species	S 5
8.	Mechanism verification	S5
9.	¹ H NMR Spectrum of the Reaction Mixture of ClO ⁻ with RO610	S 6
10.	Cytotoxicity of probe RO610 in A549 cells	S 6
11.	Theoreti calculations	S 6

- 12. HPLC spectra of the reaction mixture of ClO⁻ with RO610
- 13. NMR, Mass and IR spectra

1. Tautomerism equilibrium of ROA in diffrent solution

Fig. S1 Tautomerism equilibrium of ROA in different.

2. Acid-base equilibrium of ROA in different pH

(b) pH:

Fig. S2 (a) Fluorescent intensity of **ROA** (10 μ M) at 577 nm under different pH conditions. ($\lambda_{ex} = 515$ nm, $\lambda_{em} = 577$ nm, slit: 5 nm/5 nm). (b) Acid-base equilibrium of ring-opened **ROA** (10 μ M) in water containing 0.1% DMSO as a co-solvent.

S8

S2

3. Single crystal X-ray structure of spirocyclized ROA

Fig. S3 Single crystal X-ray structure of spirocyclized ROA.

Empirical formula	C ₂₅ H ₂₁ NO ₅
Formula weight	415.43
Temperature	296.15 K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, C 1 2/c 1
Unit cell dimensions	a = 20.420(5) Å alpha = 90 deg.
	b = 7.929(2) Å beta = 91.616(6) deg.
	c = 29.104(8) Å gamma = 90 deg.
Volume	4710(2) Å ³
Z, Calculated density	8, 1.172 Mg/m ³
Absorption coefficient	0.082mm ⁻¹
F(000)	1744
h, k, l max	24,9,34
Theta range for data collection	1.995 to 25.027 deg.
Limiting indices	-23<=h<=24, -8<=k<=9, -34<=l<=22

4. Crystal data and structure refinement for spirocyclized ROA

Reflections collected / unique	11330 / 4149 [R(int) = 0.0635]
Completeness to theta = 25.10	99.6 %
Max. and min. transmission	0.7455 and 0.6520
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4149 / 104 / 331
Goodness-of-fit on F^2	1.011
Final R indices [I>2sigma(I)]	R1 = 0.0748, wR2 = 0.2080
R indices (all data)	R1 = 0.1534, wR2 = 0.2577
Largest diff. peak and hole	0.266 and -0.263 e.Å ⁻³

Table S1 Crystal data and structure refinement for spirocyclized ROA.

5. UV-vis spectra of RO610 with increasing concentrations of ClO⁻

Fig. S4 UV-vis spectra of **RO610** (10 μ M) upon the addition of increasing concentrations of sodium hypochlorite (0–5 equiv.) in aqueous solution (20 mM phosphate buffer, pH 7.4, containing 30% EtOH as a co-solvent).

6. Fluorescence intensity changes in different pH of RO610

Fig. S5 Fluorescence intensity changes in different pH of **RO610** (10 μ M) in the absence (black) and presence (red) of 50 μ M ClO⁻ in aqueous solution (20 mM phosphate buffer, pH 7.4, containing 30% EtOH as a co-solvent) (λ_{ex} = 535 nm, λ_{em} = 577 nm, slit: 5.0 nm/5 nm).

7. Selecitivity of RO610 towards various species

Fig. S6 (a) Absorbance spectra of probe **RO610** (10 μ M) in phosphate buffer:EtOH = 7: 3 (V/V, 20 mM, pH = 7.4) in the presence of 200 μ M analytes (H₂O₂, 'OH, O₂⁻, ¹O₂, NO', TBHP, TBO') and 50 μ M CIO⁻; (b) in the presence of various anions (200 μ M) and biothiols (200 μ M).

8. Mechanism verification

Fig. S7 (a) Normalized emission and (b) Normalized absorbance of **ROA**, the probe **RO610** and the present system of probe **RO610** (10 μ M) with CIO⁻ (50 μ M) in phosphate buffer: EtOH = 7: 3 (V/V, 20 mM, pH = 7.4) (λ_{ex} = 535 nm, λ_{em} = 577 nm, slit: 5 nm/5 nm).

9. ¹H NMR Spectrum of the Reaction Mixture of ClO⁻ with RO610

Fig. S8 ¹H NMR spectrum of (a) probe **RO610** in Actone- d_6 ; (b) the product of the complete reaction mixture of the probes **RO610** with 5 equiv. CIO⁻ in Actone- d_6 .

10. Cytotoxicity of probe RO610 in A549 cells

Fig. S9 Percentage of viable A549 after treatment with RO610 (5, 10, 15, 20, 25, 30 µM) after 12 hours.

11. Theoretical calculations

Fig. S10 Molecular orbital plots (LUMO and HOMO) of ROA (ring-opened form) in MeOH based on the

optimized ground-state geometry (S₀).

12. HPLC spectra of the reaction mixture of ClO⁻ with RO610

Fig. S11 The yield of reaction of probe **RO610** with CIO⁻ was calculated by the normalization method [Agilent C_{18} chromatographic column (4.6 mm × 150 mm, 5 mm), Liquid phase : PBS (10 mM, pH = 2.15) :

Acetonitrile = 40 : 60 (V/V), Flow rate of 1 ml min⁻¹, Detection wavelength 248 nm, The sampling amount is 10 μ L].

13. NMR, Mass and IR spectra

Fig. S14 ¹³C NMR spectrum of compound ROA in CDCI₃.

Fig. S15 ESI-MS spectrum of compound ROA.

Fig. S16 ¹H NMR spectrum of compound RO610 in Actone-d₆.

Fig. S17 ¹³C NMR spectrum of compound RO610 in Actone-d₆.

Fig. S18 ESI-MS spectrum of compound RO610.