Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Heat shock protein-guided dual-mode CT/MR imaging of orthotropic

hepatocellular carcinoma tumor

Ruizhi Wang¹[§], Yu Luo²[§], Xin Li³[§], Aihua Ji¹, Rongfang Guo¹, Xiangyang Shi³*, Xiaolin Wang¹*

^a Department of Interventional, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, P. R. China

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China.

^c College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China

*To whom correspondence should be addressed. E-mail: xshi@dhu.edu.cn (X. Shi), fduwangxiaolin@hotmail.com (X. Wang).

[§] Authors contributed equally to this work.

Table S1. Zeta potential and hydrodynamic size of the Au@PEI-Gd-AAG.

Sample	Zeta potential (mV)	Hydrodynamic size (nm)	PDI
Au@PEI-Gd-AAG	$+ 6.1 \pm 0.6$	245.1 ± 8.8	0.209 ± 0.047

Table S2. The Au and Gd content of the Au@PEI-Gd-AAG, respectively.

Sample	Au (µg/mg)	Gd (µg/mg)
Au@PEI-Gd-AAG	89.5 <mark>± 3.8</mark>	17.9 <mark>± 2.9</mark>

Figure S1. ¹H NMR of COOH-PEG-(17-AAG).

Figure S2. Photographs of the Au@PEI-Gd-AAG (1 mg/mL) dispersed in water, PBS, and cell culture medium (with FBS) for 28 days. Cell culture medium (without FBS) was used as control.

Figure S3. Hydrodynamic size of the Au@PEI-Gd-AAG, 1 mg/mL, dispersed in water within

<mark>28 days.</mark>

Figure S4. Photo micrographs of HCCLM3 cells treated with PBS (a), the Au@PEI-Gd-AAG NPs

at the Gd concentrations of 10 (b), 20 (c), 40 (d), 80 (e), and 100 (f) μ g/mL for 24 h.

Figure S5. The live/dead staining photos were observed by laser confocal microscopy, and HCCLM3 cells treated with PBS (a), the Au@PEI-Gd-AAG NPs at the Gd concentrations of 10 (b), 20 (c), 40 (d), 80 (e), and 100 (f) µg/mL for 24 h.

Figure S6. Flow cytometry analysis of HCCLM3 cells treated with PBS (a, l), Au@PEI-Gd-AAG at the Gd concentration 10 (b), 25 (c), 50 (d), 75 (e) (Hsp90 blocked by free 17-AAG), and 100 (f)

 μ g/mL, and Au@PEI-Gd-AAG at the Gd concentration 10 (g), 25 (h), 50 (i), 75 (j), and 100 (k) μ g/mL for 4 h, respectively.

Figure S7. CT signal of tumor at different time points postinjection of the Au@PEI-Gd-AAG (0.3 mL in PBS, [Au] = 120 mM, mean \pm S.D., n = 3).

Figure S8. MR signal/noise ratio (SNR) of tumor at different time points postinjection of the Au@PEI-Gd-AAG (0.3 mL in PBS, [Au] = 120 mM, mean \pm S.D., n = 3). The MR signal intensity of blank was used as the background (noise). (*<0.05, **<0.01, ***<0.001)