Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. Electronic Supplementary Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Thermoresponsive double network cryogels from dendronized

copolymers showing tunable encapsulation and release of proteins

Xiaoqing Feng, ^a Jie Liu, ^a Gang Xu, ^a Xiacong Zhang, ^a Xinyan Su, ^a Wen Li, ^{*a,b} and Afang Zhang ^{*a}

^a Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, P. R. China. *Email: <u>wli@shu.edu.cn</u> (W.L.), <u>azhang@shu.edu.cn</u> (A.Z.); Tel: +86 21 66138053; Fax: +86 21 66138039

^b School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.

Content

Fig. S1 ¹ H NMR spectrum of PG_5S_1 in DMSO- d_6 at 80 °C	S3
Fig. S2 ¹ H NMR spectrum of $PG_{20}S_4T_1$ in DMSO- d_6 at 80 °C	S3
Fig. S3 ¹ H NMR spectrum of $PG_{10}S_2T_1$ in DMSO- d_6 at 80 °C.	S4
Fig. S4 ¹ H NMR spectrum of $PG_{20}S_4D_1$ in DMSO- d_6 at 80 °C	S4
Fig. S5 ¹ H NMR spectrum of $PG_{10}S_2D_1$ in DMSO- d_6 at 80 °C	S5
Fig. S6 Turbidity curves of all copolymers	S5
Fig. S7 SEM photographs of $(PG_{20}S_4T_1)_4/PVA_1$ and $(PG_{20}S_4T_2)_4/PVA_1$ at 25 °C (a, b) and 4	10 °C (a',
b'), respectively	S6
Fig. S8 Enzyme activity of lysozyme from blank and released	S6
Table S1 Release efficiency of LYS	S7
Table S2 Release efficiency of BSA	S7

Electronic Supplementary Material (ESI) for journal name This journal is © The Royal Society of Chemistry 2017

Fig. S1 ¹H NMR spectrum of PG_5S_1 in DMSO- d_6 at 80 °C. Solvent signal is marked with asterisk.

Fig. S2 ¹H NMR spectrum of $PG_{20}S_4T_1$ in DMSO- d_6 at 80 °C. Solvent signal is marked with asterisk.

Fig. S3 ¹H NMR spectrum of $PG_{10}S_2T_1$ in DMSO- d_6 at 80 °C. Solvent signal is marked with asterisk.

Fig. S4 ¹H NMR spectrum of $PG_{20}S_4D_1$ in DMSO- d_6 at 80 °C. Solvent signal is marked with asterisk.

Electronic Supplementary Material (ESI) for journal name This journal is © The Royal Society of Chemistry 2017

Fig. S5 ¹H NMR spectrum of $PG_{10}S_2D_1$ in DMSO-d₆ at 80 °C. Solvent signal is marked with asterisk.

Fig. S6 Turbidity curves of all copolymers

Fig. S7 SEM photographs of $(PG_{20}S_4T_1)_4/PVA_1$ and $(PG_{20}S_4T_2)_4/PVA_1$ at 25 °C (a, b) and 40 °C (a', b'), respectively. The scale bar is 60 μ m.

Fig. S8 Enzyme activity of LYS from blank and released samples.

Electronic Supplementary Material (ESI) for journal name This journal is © The Royal Society of Chemistry 2017

Table S1 Release efficiency of LYS					
Release efficiency	(PG ₂₀ S ₄) ₄ /PVA ₁	(PG ₂₀ S ₄ T ₁) ₄ /PVA ₁	(PG ₂₀ S ₄ T ₂) ₄ /PVA ₁		
First cycle	86.7%	97.4%	0		
Second cycle	39.2%	86.1%	0		

Table S2 Release efficiency of BSA

Release efficiency	(PG ₂₀ S ₄) ₄ /PVA ₁	(PG ₂₀ S ₄ D ₁) ₄ /PVA ₁	(PG ₂₀ S ₄ D ₂) ₄ /PVA ₁
First cycle	50.0%	72.6%	76.7%