Electronic Supplementary Information (ESI)

Enhanced Seebeck coefficient and high thermoelectric performance in *p*-type In and Mg co-doped Sn_{1-x}Pb_xTe *via* co-adjuvant effect of resonance level and heavy hole valence band

Subhajit Roychowdhury,^a U. Sandhya Shenoy,^b Umesh V. Waghmare^b and Kanishka Biswas^{a,*}

^aNew Chemistry Unit and ^bTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560 064, India. *E-mail: kanishka@jncasr.ac.in

Fig. S1: Temperature dependent (a) thermal diffusivity (D) and (b) electronic thermal conductivity (κ_{el}) of Sn_{1-x}Pb_xTe (x = 0-0.30) samples.

Fig. S2: Powder XRD patterns of (a) $Sn_{0.70-x}In_xPb_{0.30}Te$; (b) $Sn_{0.70-y}Mg_yPb_{0.30}Te$ and (c) $Sn_{0.70-x-y}In_xMg_yPb_{0.30}Te$ samples.

Fig. S3: Temperature dependent electronic thermal conductivity (κ_{el}) of (a) Sn_{0.70-x}In_xPb_{0.30}Te;
(b) Sn_{0.70-y}Mg_yPb_{0.30}Te and (c) Sn_{0.70-x-y}In_xMg_yPb_{0.30}Te samples.

Fig. S4: Temperature dependent thermal diffusivity (D) of (a) $Sn_{0.70-x}In_xPb_{0.30}Te$; (b) $Sn_{0.70-x}Mg_yPb_{0.30}Te$ and (c) $Sn_{0.70-x-y}In_xMg_yPb_{0.30}Te$ samples.